The Primate Stutiies Core facilitates the conduct of late-stage preclinical studies of mitigators of radiation damage in nonhuman primates, following the specific priorities of the RadCCORE consortium and other CMCRs nationwide, including since 2007 long-term care and study of animals surviving high-dose irradiation at other institutions. Because of the high degree of genetic and physiologic similarity of nonhuman primates to human beings, this resource is a critical component of translational assessment of candidate deliverable agents, in an experimental setting under which relevant doses of whole-body irradiation can be given to healthy subjects. Core investigators have unique skills in the experimental use and clinical medicine of nonhuman primates, including irradiation, veterinary medical care and management of myelosuppressed animals, comparative pathology of primates, pathology of radiation injury, biochemistry, clinical pathology and endocrinology of primates, and adaptation of molecular biologic techniques to the primate model. Core services include acquisition and maintenance of specific-pathogen-free nonhuman primates, exposure of animals to radiation, administration of therapeutic interventions, and clinical and pathologic assessments of treatment outcomes, including necropsy/tissue collection and sharing for baseline characterization of radiation responses and assessment of mitigating interventions. The Core also provides extensive data management services for primate studies, including data and tissue sharing.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI067798-09
Application #
8508658
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
9
Fiscal Year
2013
Total Cost
$1,824,501
Indirect Cost
$246,571
Name
Duke University
Department
Type
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Cline, John Mark; Dugan, Greg; Bourland, John Daniel et al. (2018) Post-Irradiation Treatment with a Superoxide Dismutase Mimic, MnTnHex-2-PyP5+, Mitigates Radiation Injury in the Lungs of Non-Human Primates after Whole-Thorax Exposure to Ionizing Radiation. Antioxidants (Basel) 7:
Farris, Michael; McTyre, Emory R; Okoukoni, Catherine et al. (2018) Cortical Thinning and Structural Bone Changes in Non-Human Primates after Single-Fraction Whole-Chest Irradiation. Radiat Res 190:63-71
Naqvi, Ibtehaj; Gunaratne, Ruwan; McDade, Jessica E et al. (2018) Polymer-Mediated Inhibition of Pro-invasive Nucleic Acid DAMPs and Microvesicles Limits Pancreatic Cancer Metastasis. Mol Ther 26:1020-1031
Ghandhi, Shanaz A; Turner, Helen C; Shuryak, Igor et al. (2018) Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells. PLoS One 13:e0191402
Castle, Katherine D; Daniel, Andrea R; Moding, Everett J et al. (2018) Mice Lacking RIP3 Kinase are not Protected from Acute Radiation Syndrome. Radiat Res 189:627-633
Kurkjian, Cathryn J; Guo, Hao; Montgomery, Nathan D et al. (2017) The Toll-Like Receptor 2/6 Agonist, FSL-1 Lipopeptide, Therapeutically Mitigates Acute Radiation Syndrome. Sci Rep 7:17355
Racioppi, Luigi; Lento, William; Huang, Wei et al. (2017) Calcium/calmodulin-dependent kinase kinase 2 regulates hematopoietic stem and progenitor cell regeneration. Cell Death Dis 8:e3076
Himburg, Heather A; Doan, Phuong L; Quarmyne, Mamle et al. (2017) Dickkopf-1 promotes hematopoietic regeneration via direct and niche-mediated mechanisms. Nat Med 23:91-99
Linz, Brandon M L; Neely, Crystal J; Kartchner, Laurel B et al. (2017) Innate Immune Cell Recovery Is Positively Regulated by NLRP12 during Emergency Hematopoiesis. J Immunol 198:2426-2433
Jha, Sushmita; Brickey, W June; Ting, Jenny Pan-Yun (2017) Inflammasomes in Myeloid Cells: Warriors Within. Microbiol Spectr 5:

Showing the most recent 10 out of 197 publications