The Administrative Core monitors the University of Pittsburgh Cancer Institute CMCR website and distributes information with three different firewall levels: First, to investigators within the University of Pittsburgh CMCR, a second level to all CMCR Programs throughout eight NIAID/NIH CMCR centers, and a third level to all interested parties from inside and outside the University of Pittsburgh Medical Center. The Administrative Core oversees new grant collaborations (Table 1) and solicits and receives Pilot Project (Table 2) and Education and Development Core applications (Table 3) from post-doctoral fellows and faculty members throughout the United States and Canada. Applications are circulated among the Pitt CMCR review committees (First Drs. Kagan, Peterson, and Greenberger, then the Internal Advisory Committee (Fig. 1) for each respective program, reviews are collected, documentation ofthe reviews collated, and recommendation for funding forwarded to NIAID colleagues for approval. The Administrative Core serves as liaison with the Institutional IACUC Program to make sure of compliance of all projects, cores, and pilot projects/education and development core applicants with institutional regulations.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI068021-09
Application #
8515299
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
9
Fiscal Year
2013
Total Cost
$48,012
Indirect Cost
$14,565
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Liu, Bing; Bhatt, Divesh; Oltvai, Zoltán N et al. (2014) Significance of p53 dynamics in regulating apoptosis in response to ionizing radiation, and polypharmacological strategies. Sci Rep 4:6245
Kalash, Ronny; Berhane, Hebist; Yang, Yong et al. (2014) Improved survival of mice after total body irradiation with 10 MV photon, 2400 MU/min SRS beam. In Vivo 28:1-12
Kagan, Valerian E; Kapralov, Alexandr A; St Croix, Claudette M et al. (2014) Lung macrophages "digest" carbon nanotubes using a superoxide/peroxynitrite oxidative pathway. ACS Nano 8:5610-21
Kagan, Valerian E; Chu, Charleen T; Tyurina, Yulia Y et al. (2014) Cardiolipin asymmetry, oxidation and signaling. Chem Phys Lipids 179:64-9
Amoscato, A A; Sparvero, L J; He, R R et al. (2014) Imaging mass spectrometry of diversified cardiolipin molecular species in the brain. Anal Chem 86:6587-95
Jiang, Jianfei; Bakan, Ahmet; Kapralov, Alexandr A et al. (2014) Designing inhibitors of cytochrome c/cardiolipin peroxidase complexes: mitochondria-targeted imidazole-substituted fatty acids. Free Radic Biol Med 71:221-30
Stoyanovsky, D A; Sparvero, L J; Amoscato, A A et al. (2014) Improved spatial resolution of matrix-assisted laser desorption/ionization imaging of lipids in the brain by alkylated derivatives of 2,5-dihydroxybenzoic acid. Rapid Commun Mass Spectrom 28:403-12
Tyurina, Yulia Y; Domingues, Rosario M; Tyurin, Vladimir A et al. (2014) Characterization of cardiolipins and their oxidation products by LC-MS analysis. Chem Phys Lipids 179:3-10
Chu, Charleen T; Bayýýr, Hulya; Kagan, Valerian E (2014) LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons: implications for Parkinson disease. Autophagy 10:376-8
Tyurina, Yulia Y; Poloyac, Samuel M; Tyurin, Vladimir A et al. (2014) A mitochondrial pathway for biosynthesis of lipid mediators. Nat Chem 6:542-52

Showing the most recent 10 out of 101 publications