Core E has several investigators with extensive expertise in drug delivery, synthetic/bioconjugation chemistry, and nanotechnology. The central function of Core E is to provide a """"""""tool box"""""""" comprised of various types of delivery systems to accommodate different radiation protectors/mitigators that either have been or will be developed from different research projects in our CMCR. Specific services will be provided to 1) improve the bioavailability of testing compounds that are non-orally active and poorly water soluble by formulating them in nanoparticulates for testing of in vivo activity and toxicity;2) selectively deliver radiation mitigators to the cytoplasm or mitochondria of critical cell types in vital organs through the use of lipidic systems or lipid-coated biodegradable carbon nanotubes;and 3) to achieve controlled/slow release of the active ingredients through either the emulsion particles with an oil core that is made of fat with high melting temperature or through triggered release from the nanotubes

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI068021-09
Application #
8515302
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
9
Fiscal Year
2013
Total Cost
$160,111
Indirect Cost
$48,570
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Wang, Yi-Jun; Fletcher, Rochelle; Yu, Jian et al. (2018) Immunogenic effects of chemotherapy-induced tumor cell death. Genes Dis 5:194-203
Chen, Dongshi; Tong, Jingshan; Yang, Liheng et al. (2018) PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. Proc Natl Acad Sci U S A 115:3930-3935
Chen, Dongshi; Ni, Hong-Min; Wang, Lei et al. (2018) PUMA induction mediates acetaminophen-induced necrosis and liver injury. Hepatology :
Chao, Honglu; Anthonymuthu, Tamil S; Kenny, Elizabeth M et al. (2018) Disentangling oxidation/hydrolysis reactions of brain mitochondrial cardiolipins in pathogenesis of traumatic injury. JCI Insight 3:
Steinman, Justin; Epperly, Michael; Hou, Wen et al. (2018) Improved Total-Body Irradiation Survival by Delivery of Two Radiation Mitigators that Target Distinct Cell Death Pathways. Radiat Res 189:68-83
Lou, Wenjia; Ting, Hsiu-Chi; Reynolds, Christian A et al. (2018) Genetic re-engineering of polyunsaturated phospholipid profile of Saccharomyces cerevisiae identifies a novel role for Cld1 in mitigating the effects of cardiolipin peroxidation. Biochim Biophys Acta Mol Cell Biol Lipids 1863:1354-1368
Anthonymuthu, Tamil S; Kenny, Elizabeth M; Lamade, Andrew M et al. (2018) Oxidized phospholipid signaling in traumatic brain injury. Free Radic Biol Med 124:493-503
Hassannia, Behrouz; Wiernicki, Bartosz; Ingold, Irina et al. (2018) Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest 128:3341-3355
Conrad, Marcus; Kagan, Valerian E; Bayir, Hülya et al. (2018) Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 32:602-619
Stoyanovsky, Anastas D; Stoyanovsky, Detcho A (2018) 1-Oxo-2,2,6,6-tetramethylpiperidinium bromide converts ?-H N,N-dialkylhydroxylamines to nitrones via a two-electron oxidation mechanism. Sci Rep 8:15323

Showing the most recent 10 out of 203 publications