The specific aims ofthe Chemoinformatics core are the following: A.I. Contribute computational expertise to the hit-to-lead activities, library design, lead optimization and identification of potential mitigators of radiation damage at the CMCR A.2. Provide computer-aided predictions of drug toxicity and metabolism A.3. Identify target-mitigator interaction pathways and networks to correlate molecular functions to physiological processes that will help in designing safe and efficient mitigators of radiation damage. The Computational Chemistry and Compu-tational Biology resources from the Department of Computational Biology (DCB) will be used to integrate workflow and dataflow for optimum effectiveness in achieving the goals ofthe CMCR projects. This integration, as indicated in Figure 1, will make possible a fast iterative virtual screening to help the project participants effectively prioritize synthesis and screening efforts.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
United States
Zip Code
Liu, Bing; Bhatt, Divesh; Oltvai, Zoltán N et al. (2014) Significance of p53 dynamics in regulating apoptosis in response to ionizing radiation, and polypharmacological strategies. Sci Rep 4:6245
Kalash, Ronny; Berhane, Hebist; Yang, Yong et al. (2014) Improved survival of mice after total body irradiation with 10 MV photon, 2400 MU/min SRS beam. In Vivo 28:1-12
Kagan, Valerian E; Kapralov, Alexandr A; St Croix, Claudette M et al. (2014) Lung macrophages "digest" carbon nanotubes using a superoxide/peroxynitrite oxidative pathway. ACS Nano 8:5610-21
Kagan, Valerian E; Chu, Charleen T; Tyurina, Yulia Y et al. (2014) Cardiolipin asymmetry, oxidation and signaling. Chem Phys Lipids 179:64-9
Amoscato, A A; Sparvero, L J; He, R R et al. (2014) Imaging mass spectrometry of diversified cardiolipin molecular species in the brain. Anal Chem 86:6587-95
Jiang, Jianfei; Bakan, Ahmet; Kapralov, Alexandr A et al. (2014) Designing inhibitors of cytochrome c/cardiolipin peroxidase complexes: mitochondria-targeted imidazole-substituted fatty acids. Free Radic Biol Med 71:221-30
Stoyanovsky, D A; Sparvero, L J; Amoscato, A A et al. (2014) Improved spatial resolution of matrix-assisted laser desorption/ionization imaging of lipids in the brain by alkylated derivatives of 2,5-dihydroxybenzoic acid. Rapid Commun Mass Spectrom 28:403-12
Tyurina, Yulia Y; Domingues, Rosario M; Tyurin, Vladimir A et al. (2014) Characterization of cardiolipins and their oxidation products by LC-MS analysis. Chem Phys Lipids 179:3-10
Chu, Charleen T; Bayýýr, Hulya; Kagan, Valerian E (2014) LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons: implications for Parkinson disease. Autophagy 10:376-8
Tyurina, Yulia Y; Poloyac, Samuel M; Tyurin, Vladimir A et al. (2014) A mitochondrial pathway for biosynthesis of lipid mediators. Nat Chem 6:542-52

Showing the most recent 10 out of 101 publications