Ionizing irradiation-induced damage to cells, tissues, and organs involves nuclear DNA strand breaks and associated activation and transport through the cytoplasm to the mitochondria of stress activated protein kinases and other molecules which initiate apoptosis. Oxidative stress events at the mitochondria activate a molecular cascade leading to mitochondrial membrane permeability, cytochrome C leakage, and activation ofthe caspase pathway for cell death. We propose to develop radiation mitigator drugs by focus on neutralizing mitochondrial specific steps in early response to irradiation damage which will prevent irreversible cell death. Project 1 focuses on developing mitochondrial targeted nitroxides, nitric oxide synthase inhibitors and p53/mdm2/mdm4 inhibitors. Project 2 develops small molecules to target cardiolipin/cytochrome C interaction to stabilize mitochondrial function. Project 3 uses siRNA targeting to identify RNAs induced by radiation to identify novel radiation mitigator drugs. Project 4 seeks to identify agents that stabilize mitochondrial manganese superoxide dismutase by preventing nitration. Project 5 seeks to develop small molecule inhibitors of PUMA thereby stabilizing the anti apoptotic effects of p53. Eight cores (A) administrative, B) pilot project, C) biomarkers, D) innovative medicinal chemistry, E) smart drug delivery, F) biostatistics, G) radiobiological standardization and H) chemoinformatics support the five (5) projects.

National Institute of Health (NIH)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Program Officer
Macchiarini, Francesca
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Medicine
United States
Zip Code
Liu, Bing; Bhatt, Divesh; Oltvai, Zoltán N et al. (2014) Significance of p53 dynamics in regulating apoptosis in response to ionizing radiation, and polypharmacological strategies. Sci Rep 4:6245
Kalash, Ronny; Berhane, Hebist; Yang, Yong et al. (2014) Improved survival of mice after total body irradiation with 10 MV photon, 2400 MU/min SRS beam. In Vivo 28:1-12
Kagan, Valerian E; Kapralov, Alexandr A; St Croix, Claudette M et al. (2014) Lung macrophages "digest" carbon nanotubes using a superoxide/peroxynitrite oxidative pathway. ACS Nano 8:5610-21
Kagan, Valerian E; Chu, Charleen T; Tyurina, Yulia Y et al. (2014) Cardiolipin asymmetry, oxidation and signaling. Chem Phys Lipids 179:64-9
Amoscato, A A; Sparvero, L J; He, R R et al. (2014) Imaging mass spectrometry of diversified cardiolipin molecular species in the brain. Anal Chem 86:6587-95
Jiang, Jianfei; Bakan, Ahmet; Kapralov, Alexandr A et al. (2014) Designing inhibitors of cytochrome c/cardiolipin peroxidase complexes: mitochondria-targeted imidazole-substituted fatty acids. Free Radic Biol Med 71:221-30
Stoyanovsky, D A; Sparvero, L J; Amoscato, A A et al. (2014) Improved spatial resolution of matrix-assisted laser desorption/ionization imaging of lipids in the brain by alkylated derivatives of 2,5-dihydroxybenzoic acid. Rapid Commun Mass Spectrom 28:403-12
Tyurina, Yulia Y; Domingues, Rosario M; Tyurin, Vladimir A et al. (2014) Characterization of cardiolipins and their oxidation products by LC-MS analysis. Chem Phys Lipids 179:3-10
Chu, Charleen T; Bayýýr, Hulya; Kagan, Valerian E (2014) LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons: implications for Parkinson disease. Autophagy 10:376-8
Tyurina, Yulia Y; Poloyac, Samuel M; Tyurin, Vladimir A et al. (2014) A mitochondrial pathway for biosynthesis of lipid mediators. Nat Chem 6:542-52

Showing the most recent 10 out of 101 publications