Core G: Imaging Radiation Pathology Studying the downstream effects of radiation or the efficacy of therapeutic intervention fundamentally depend on visualization and quantitation of effect. These are commonly best assessed using quantiativie microscopic approaches. The Imaging Radiation Pathology Core is housed within the Center for Biologic Imaging, in which this core service will be performed, is designed for the purpose of providing state of the art microscopic technologies to its users. It is equipped to perform a continuum of optical methods including all types of light and electron microscopy essential to this Program. All investigators have made, and continue to make, heavy use of the CBI for facility-specific imaging methodologies. Evidence of the longevity of this use is seen in co-authored publications between the PI and staff of the Core (Watkins, St. Croix, Stolz) and PI's of the individual projects. The imaging specialties afforded by CBI include all ultrastructural electron microscopy (transmission electron microscopy, scanning electron microscopy, immuno-electron SEM and TEM), light and fluorescence microscopy (macro dissecting light and fluorescence, epi-fluorescence, confocal scanning and multi-photon imaging), live cell microscopy (transmitted light and fluorescence) and fluorescence specialties like FRET, FRAP spectral analysis and ratiometric imaging. Also critical to data processing, a wide range of image analysis software and technical assistance is available to program investigators.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI068021-15
Application #
9757673
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2019-09-01
Budget End
2020-08-31
Support Year
15
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Type
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15260
Wang, Yi-Jun; Fletcher, Rochelle; Yu, Jian et al. (2018) Immunogenic effects of chemotherapy-induced tumor cell death. Genes Dis 5:194-203
Chen, Dongshi; Tong, Jingshan; Yang, Liheng et al. (2018) PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. Proc Natl Acad Sci U S A 115:3930-3935
Chen, Dongshi; Ni, Hong-Min; Wang, Lei et al. (2018) PUMA induction mediates acetaminophen-induced necrosis and liver injury. Hepatology :
Chao, Honglu; Anthonymuthu, Tamil S; Kenny, Elizabeth M et al. (2018) Disentangling oxidation/hydrolysis reactions of brain mitochondrial cardiolipins in pathogenesis of traumatic injury. JCI Insight 3:
Steinman, Justin; Epperly, Michael; Hou, Wen et al. (2018) Improved Total-Body Irradiation Survival by Delivery of Two Radiation Mitigators that Target Distinct Cell Death Pathways. Radiat Res 189:68-83
Lou, Wenjia; Ting, Hsiu-Chi; Reynolds, Christian A et al. (2018) Genetic re-engineering of polyunsaturated phospholipid profile of Saccharomyces cerevisiae identifies a novel role for Cld1 in mitigating the effects of cardiolipin peroxidation. Biochim Biophys Acta Mol Cell Biol Lipids 1863:1354-1368
Anthonymuthu, Tamil S; Kenny, Elizabeth M; Lamade, Andrew M et al. (2018) Oxidized phospholipid signaling in traumatic brain injury. Free Radic Biol Med 124:493-503
Hassannia, Behrouz; Wiernicki, Bartosz; Ingold, Irina et al. (2018) Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest 128:3341-3355
Conrad, Marcus; Kagan, Valerian E; Bayir, Hülya et al. (2018) Regulation of lipid peroxidation and ferroptosis in diverse species. Genes Dev 32:602-619
Stoyanovsky, Anastas D; Stoyanovsky, Detcho A (2018) 1-Oxo-2,2,6,6-tetramethylpiperidinium bromide converts ?-H N,N-dialkylhydroxylamines to nitrones via a two-electron oxidation mechanism. Sci Rep 8:15323

Showing the most recent 10 out of 203 publications