Allergic disorders are a major global health burden affecting up to 40% of the world population. Common biologic pathways underlie allergic diseases such as asthma, AD, FA and EE with the epithelium being a link. Indeed, epithelial cells are increasingly recognized as critical participants in the pathogenesis of allergic inflammation. As such, studies are needed to further elucidate the epithelial genes and pathways that contribute to allergic inflammation. This is underscored by the fact that there is currently no asthma therapy that specifically targets the epithelium. In the last cycle of funding, we utilized a novel unbiased strategy, which combined expression profiling of nasal epithelial cells from patients with asthma, population differences in asthma prevalence, and genetic association studies, to identify epithelial genes that contributed to childhood asthma. We identified several epithelial genes with previously unrecognized roles in asthma. Further analyses of these genes suggest that some of these genes are specific to one epithelial surface and are associated with one allergic disease, while others are common to multiple epithelial surfaces and allergic disorders. Collectively, our data suggest that depending on the target organ/mucosal surface, there are common and distinct epithelial genes and pathways that contribute to allergic inflammation. The Identification of the epithelial genes and pathways, which predispose individuals to specific or shared allergic disorders, will empower the search for novel therapeutics aimed specifically at the epithelial surface, and the development of treatment strategies that are optimized for allergic disorders alone and/or in combination. In the prior cycle, we studied children with asthma and/or AR. In this application, we propose to extend our genetic approach to test the hypothesis that allergy-driven epithelial genes Identified in the prior cycle of funding (SERPINB3/4, KIF3A, DNAH5, SPRR2B, ADCY2, PDE4B, PLAU, EGFR) will demonstrate unique and overlapping associations with asthma, atopic dermatitis, and/or food allergy in children and that the genetic contribution of these genes is modified by epistatic interactions with epithelial genes critical in maintaining the integrity of the mucosal barrier and/or promoting Th2 responses.

Public Health Relevance

Allergic disorders are a major global health burden affecting up to 40% of the world population. Common biologic pathways underlie allergic diseases with the epithelium being a link. The proposed studies are highly significant because they will identify epithelial genes and pathways that promote allergic disease. This information will provide a basis for improved phenotyping and optimized treatment strategies for allergic disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
2U19AI070235-06
Application #
8196244
Study Section
Special Emphasis Panel (ZAI1-PA-I (M1))
Project Start
2011-07-01
Project End
2016-06-30
Budget Start
2011-09-01
Budget End
2012-08-31
Support Year
6
Fiscal Year
2011
Total Cost
$361,218
Indirect Cost
Name
Cincinnati Children's Hospital Medical Center
Department
Type
DUNS #
071284913
City
Cincinnati
State
OH
Country
United States
Zip Code
45229
Litosh, Vladislav A; Rochman, Mark; Rymer, Jeffrey K et al. (2017) Calpain-14 and its association with eosinophilic esophagitis. J Allergy Clin Immunol 139:1762-1771.e7
Kottyan, L C; Rothenberg, M E (2017) Genetics of eosinophilic esophagitis. Mucosal Immunol 10:580-588
Shik, Dana; Tomar, Sunil; Lee, Jee-Boong et al. (2017) IL-9-producing cells in the development of IgE-mediated food allergy. Semin Immunopathol 39:69-77
Rochman, Mark; Travers, Jared; Miracle, Cora E et al. (2017) Profound loss of esophageal tissue differentiation in patients with eosinophilic esophagitis. J Allergy Clin Immunol 140:738-749.e3
O'Shea, Kelly M; Aceves, Seema S; Dellon, Evan S et al. (2017) Pathophysiology of Eosinophilic Esophagitis. Gastroenterology :
Wen, Ting; Kuhl, Jonathan; Putnam, Philip et al. (2017) A flow cytometry-based diagnosis of eosinophilic esophagitis. J Allergy Clin Immunol 140:1736-1739.e3
Travers, J; Rochman, M; Caldwell, J M et al. (2017) IL-33 is induced in undifferentiated, non-dividing esophageal epithelial cells in eosinophilic esophagitis. Sci Rep 7:17563
Johansson, Elisabet; Biagini Myers, Jocelyn M; Martin, Lisa J et al. (2017) KIF3A genetic variation is associated with pediatric asthma in the presence of eczema independent of allergic rhinitis. J Allergy Clin Immunol 140:595-598.e5
Caldwell, Julie M; Paul, Misu; Rothenberg, Marc E (2017) Novel immunologic mechanisms in eosinophilic esophagitis. Curr Opin Immunol 48:114-121
Caldwell, J M; Collins, M H; Kemme, K A et al. (2017) Cadherin 26 is an alpha integrin-binding epithelial receptor regulated during allergic inflammation. Mucosal Immunol 10:1190-1201

Showing the most recent 10 out of 88 publications