The San Antonio Asthma and Allergic Diseases Cooperative Research Center (SA-AADCRC) represents a tightly focused, integrative and innovative effort to understand the role of Mycoplasma pneumoniae and its unique ADP-ribosylating and vacuolating toxin, designated Community Acquired Respiratory Distress Syndrome ToXin (CARDS TX) as important mediators of acute and chronic airway diseases, including new onset asthma and exacerbations, as well as persistent pulmonary dysfunction in children and adults. The basic science and clinical investigators who comprise the SA-AADCRC team share broad expertise and are highly collaborative. The SA-AADCRC's broad strategy of attack interlinks basic science and clinical research projects and cores. Project 1 uses the murine model and human materials to address fundamental questions on how CARDS TX induces asthma-like disease and exacerbates allergic pulmonary inflammation. Project 2 focuses on identifying CARDS TX ADP-ribosylating airway protein targets, delineating functionally important CARDS TX domains and essential amino acids that mediate CARDS TX binding to human surfactant protein A (SP-A) and airway cells, and generating antibody reagents that block/neutralize CARDS TX. Project 3 applies state-of-the-art biophysical techniques to uncover the structure and action of CARDS TX by using single crystal X-ray diffraction to determine CARDS TX three dimensional structure in the presence and absence of its cofactor NAD;neutralizing monoclonal antibody Fab fragments;and surfactant protein-A (SP-A). Clinical Core will collect human material from subjects with well controlled asthma, poorly controlled asthma and healthy controls and help in evaluation and follow-up of patient-related studies. Diagnostic Core will process clinical and experimental samples for diagnostic analysis by providing highly sensitive and specific diagnostic assays for rapid detection of M. pneumoniae CARDS TX. Pathology Core will provide necessary biopsy and necropsy procedures, lung pathology interpretation, histochemical and immunocytochemical evaluations, and qualitative and semiquantitative histopathologicai analyses. Administrative Core will oversee all SA-AADCRC-related activities and coordinate interactions and collaborations between projects and cores. Therefore, the SA-AADCRC represents a network of collaborators/colleagues who continuously ask fundamental and translational questions about asthma, airway-related pathologies, immunopathogenesis, and M. pneumoniae/CARDS TX biology and virulence mechanisms.

Public Health Relevance

The SA-AADCRC is committed to clarifying how Mycoplasma pneumoniae and its unique ADP ribosylating and vacuolating toxin, designated Community Acquired Respiratory Distress Syndrome ToXin (CARDS TX) causes asthma and allergic diseases and to providing rational strategies that lead to the development of new and novel diagnostics and therapeutics for the treatment and prevention of pulmonary diseases.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-PA-I (M1))
Program Officer
Dong, Gang
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Health Science Center San Antonio
Schools of Medicine
San Antonio
United States
Zip Code
Ji, Hong; Zhang, Xue; Oh, Sunghee et al. (2015) Dynamic transcriptional and epigenomic reprogramming from pediatric nasal epithelial cells to induced pluripotent stem cells. J Allergy Clin Immunol 135:236-44
Medina, Jorge L; Coalson, Jacqueline J; Brooks, Edward G et al. (2014) Mycoplasma pneumoniae CARDS toxin exacerbates ovalbumin-induced asthma-like inflammation in BALB/c mice. PLoS One 9:e102613
Kannan, Thirumalai R; Krishnan, Manickam; Ramasamy, Kumaraguruparan et al. (2014) Functional mapping of community-acquired respiratory distress syndrome (CARDS) toxin of Mycoplasma pneumoniae defines regions with ADP-ribosyltransferase, vacuolating and receptor-binding activities. Mol Microbiol 93:568-81
Somarajan, Sudha R; Al-Asadi, Fadi; Ramasamy, Kumaraguruparan et al. (2014) Annexin A2 mediates Mycoplasma pneumoniae community-acquired respiratory distress syndrome toxin binding to eukaryotic cells. MBio 5:
Burks, Margaret L; Brooks, Edward G; Hill, Vanessa L et al. (2013) Assessing proxy reports: agreement between children with asthma and their caregivers on quality of life. Ann Allergy Asthma Immunol 111:14-9
Krishnan, Manickam; Kannan, T R; Baseman, Joel B (2013) Mycoplasma pneumoniae CARDS toxin is internalized via clathrin-mediated endocytosis. PLoS One 8:e62706
Kannan, T R; Hardy, R D; Coalson, J J et al. (2012) Fatal outcomes in family transmission of Mycoplasma pneumoniae. Clin Infect Dis 54:225-31
Medina, Jorge L; Coalson, Jacqueline J; Brooks, Edward G et al. (2012) Mycoplasma pneumoniae CARDS toxin induces pulmonary eosinophilic and lymphocytic inflammation. Am J Respir Cell Mol Biol 46:815-22
Johnson, Coreen; Kannan, T R; Baseman, Joel B (2011) Cellular vacuoles induced by Mycoplasma pneumoniae CARDS toxin originate from Rab9-associated compartments. PLoS One 6:e22877
Muir, Mark T; Cohn, Stephen M; Louden, Christopher et al. (2011) Novel toxin assays implicate Mycoplasma pneumoniae in prolonged ventilator course and hypoxemia. Chest 139:305-10

Showing the most recent 10 out of 20 publications