Asthma is a complex disorder characterized by episodic airway obstruction and hyper-responsiveness, sometimes accompanied by airway remodeling. Although the underlying causes of asthma remain poorly understood, one contributing factor is exposure to respiratory pathogens. For example, asthmatics positive for Mycoplasma pneumoniae (M. pneumoniae) infection have demonstrated an improvement in pulmonary function after antibiotic treatment whereas patients that test negative do not, suggesting a causal relationship between M. pneumoniae infection and asthma symptom severity. Although there is a strong clinical correlation between M. pneumoniae infection and a sub-set of asthma cases, until recently, the identification of a virulence factor that might play a role in disease pathogenesis had remained elusive. This situation changed, however, when we discovered a 591 amino acid protein with ADP-ribosyltransferase (ART) activity in M. pneumoniae designated Community Acquired Respiratory Distress Syndrome ToXin (CARDS TX). The experiments outlined in this proposal are designed to uncover the structure and action of CARDS TX using a range of biophysical techniques. Using the well-established tools of single crystal X-ray diffraction, we will determine: 1) the three-dimensional structure of CARDS TX;2) CARDS TX in complex with its NAD

Public Health Relevance

CARDS TX is a virulence protein used by Mycoplasma pneumoniae, the causative agent of asthma, pneumonia, and other inflammatory lung disorders in humans. The experiments outlined in this proposal will reveal the molecular structure of CARDS TX and will illuminate its mode of action. This information will in turn permit the design of novel diagnostic and therapeutic avenues for the treatment of asthma and other pulmonary diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI070412-08
Application #
8513882
Study Section
Special Emphasis Panel (ZAI1-PA-I)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
8
Fiscal Year
2013
Total Cost
$142,546
Indirect Cost
$35,386
Name
University of Texas Health Science Center San Antonio
Department
Type
DUNS #
800772162
City
San Antonio
State
TX
Country
United States
Zip Code
78229
Ramasamy, Kumaraguruparan; Balasubramanian, Sowmya; Manickam, Krishnan et al. (2018) Mycoplasma pneumoniae Community-Acquired Respiratory Distress Syndrome Toxin Uses a Novel KELED Sequence for Retrograde Transport and Subsequent Cytotoxicity. MBio 9:
Maselli, Diego J; Medina, Jorge L; Brooks, Edward G et al. (2018) The Immunopathologic Effects of Mycoplasma pneumoniae and Community-acquired Respiratory Distress Syndrome Toxin. A Primate Model. Am J Respir Cell Mol Biol 58:253-260
Segovia, Jesus A; Chang, Te-Hung; Winter, Vicki T et al. (2018) NLRP3 Is a Critical Regulator of Inflammation and Innate Immune Cell Response during Mycoplasma pneumoniae Infection. Infect Immun 86:
Benedetto, Roberta; Ousingsawat, Jiraporn; Wanitchakool, Podchanart et al. (2017) Epithelial Chloride Transport by CFTR Requires TMEM16A. Sci Rep 7:12397
Steed, Ashley L; Christophi, George P; Kaiko, Gerard E et al. (2017) The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 357:498-502
Sundaram, Aparna; Chen, Chun; Khalifeh-Soltani, Amin et al. (2017) Targeting integrin ?5?1 ameliorates severe airway hyperresponsiveness in experimental asthma. J Clin Invest 127:365-374
Wood, Pamela R; Kampschmidt, Jordan C; Dube, Peter H et al. (2017) Mycoplasma pneumoniae and health outcomes in children with asthma. Ann Allergy Asthma Immunol 119:146-152.e2
Shen, Haiqian; Gonzalez-Juarbe, Norberto; Blanchette, Krystle et al. (2016) CD8(+) T cells specific to a single Yersinia pseudotuberculosis epitope restrict bacterial replication in the liver but fail to provide sterilizing immunity. Infect Genet Evol 43:289-96
Buchheit, Kathleen M; Cahill, Katherine N; Katz, Howard R et al. (2016) Thymic stromal lymphopoietin controls prostaglandin D2 generation in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 137:1566-1576.e5
Cahill, Katherine N; Raby, Benjamin A; Zhou, Xiaobo et al. (2016) Impaired E Prostanoid2 Expression and Resistance to Prostaglandin E2 in Nasal Polyp Fibroblasts from Subjects with Aspirin-Exacerbated Respiratory Disease. Am J Respir Cell Mol Biol 54:34-40

Showing the most recent 10 out of 41 publications