The program comprises 7 major subthemes - 4 projects, 2 specific cores and one technical development program. The leader of each team has specific expertise in one area of clinical medicine, immunology, cell biology and/or molecular biology. Each on their own has made a significant contribution to the bigger picture of viral pathogenesis in hepatitis C. The key feature of this consortium is that these have been blended to create a scientific team which is more than the sum of its parts, as will be detailed below. Specifically we propose to:- 1. Define the role of the hepatocyte as a key player in innate and adaptive immune responses (Project 1 Chung) 2. Define the specific qualities of tissue homing T cell populations in relation to hepatitis C infection (Project 2, Klenerman). 3. Define the functional capacity of intrahepatic T cell populations in persistent infection (Project 3, Lauer/Wherry). 4. Define the impact of T cell selection pressure on viral sequence evolution and the fitness landscape (Project 4, Allen/Henn). 5. Create a panel of reagents to modulate the surface signaling platform of T cells and antigen presenting cells (Core C/Freeman). 6. Create a library of tissue and cells from well defined clinical cohorts for experimental use (Core D/Misradji). 7. Develop a platform technology to examine and modulate critical signaling pathways that limit the adaptive immune response (TDP/Haining).

Public Health Relevance

Hepatitis C virus (HCV) is a major global health problem. Nearly 170 million people worldwide are infected and a substantial fraction of these will develop chronic liver disease, leading to cirrhosis, liver failure and liver cancer. Current therapies are imperfect and expensive, and no vaccine exists. However, there is ample evidence that the immune system plays a critical role in protection against chronic infection. Thus in its own right Hepatitis C virus is a critical target for research, with the aim of developing improved understanding of the virus and immunology, leading to improved therapies and interventions.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-KS-I (J4))
Program Officer
Quill, Helen R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Lin, Wenyu; Zhu, Chuanlong; Hong, Jian et al. (2015) The spliceosome factor SART1 exerts its anti-HCV action through mRNA splicing. J Hepatol 62:1024-32
Jilg, Nikolaus; Lin, Wenyu; Hong, Jian et al. (2014) Kinetic differences in the induction of interferon stimulated genes by interferon-* and interleukin 28B are altered by infection with hepatitis C virus. Hepatology 59:1250-61
Kroy, Daniela C; Ciuffreda, Donatella; Cooperrider, Jennifer H et al. (2014) Liver environment and HCV replication affect human T-cell phenotype and expression of inhibitory receptors. Gastroenterology 146:550-61
Lee, Mark N; Ye, Chun; Villani, Alexandra-ChloƩ et al. (2014) Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science 343:1246980
Crawford, Alison; Angelosanto, Jill M; Kao, Charlly et al. (2014) Molecular and transcriptional basis of CD4? T cell dysfunction during chronic infection. Immunity 40:289-302
Feeney, Eoin R; Chung, Raymond T (2014) Antiviral treatment of hepatitis C. BMJ 348:g3308
Fackler, Oliver T; Murooka, Thomas T; Imle, Andrea et al. (2014) Adding new dimensions: towards an integrative understanding of HIV-1 spread. Nat Rev Microbiol 12:563-74
Xiao, Yanping; Yu, Sanhong; Zhu, Baogong et al. (2014) RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. J Exp Med 211:943-59
Veerapu, Naga Suresh; Park, Su-Hyung; Tully, Damien C et al. (2014) Trace amounts of sporadically reappearing HCV RNA can cause infection. J Clin Invest 124:3469-78
Ussher, James E; Bilton, Matthew; Attwod, Emma et al. (2014) CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. Eur J Immunol 44:195-203

Showing the most recent 10 out of 72 publications