The main purpose of CORE C is to provide a large number of human specimens from well-defined patient cohorts to the scientific projects and the Technology Development Core of the Collaborative Research Center. As before, a primary focus of the core will be to maintain a large tissue bank of liver tissue samples from patients with and without HCV infection. The core will also provide and collect histopathological assessment of disease stage and status in combination with clinical information Furthermore, the core will coordinate the ongoing collection of blood/tissue samples, including large numbers of PBMC via buffy coat and leukapheresis protocols, maintain databases of available research samples together with relevant clinical data and will coordinate distribution of tissue, PBMC and plasma/serum samples among the investigators. Specifically the core will: 1) Collect longitudinal specimens, including large numbers of PBMC from leukapheresis, subjects with chronic HCV infection undergoing DAA therapy. from 2) Maintain and expand a large repository of PBMC from subjects with chronic HCV infection, resolved HCV infection and healthy controls, including large numbers of PBMC from buffy coats and leukapheresis.DD 3) Maintain and expand a large tissue bank of HCV-infected and non-HCV control tissue consisting of liver explant samples, surgical resection specimens and liver biopsies and provide liver-infiltrating lymphocytes derived from fine-needle aspirate samples. DD 4) Maintain an established database of all research specimens and available patient information and coordinate all aspects of sample collection and distribution.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI082630-09
Application #
9283313
Study Section
Special Emphasis Panel (ZAI1-LAR-I)
Project Start
Project End
Budget Start
2017-06-01
Budget End
2018-05-31
Support Year
9
Fiscal Year
2017
Total Cost
$287,509
Indirect Cost
$122,274
Name
Massachusetts General Hospital
Department
Type
Independent Hospitals
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02114
Gordon, Claire Louse; Lee, Lian Ni; Swadling, Leo et al. (2018) Induction and Maintenance of CX3CR1-Intermediate Peripheral Memory CD8+ T Cells by Persistent Viruses and Vaccines. Cell Rep 23:768-782
Duan, Xiaoqiong; Li, Shilin; Holmes, Jacinta A et al. (2018) MicroRNA 130a Regulates both Hepatitis C Virus and Hepatitis B Virus Replication through a Central Metabolic Pathway. J Virol 92:
Bengsch, Bertram; Ohtani, Takuya; Khan, Omar et al. (2018) Epigenomic-Guided Mass Cytometry Profiling Reveals Disease-Specific Features of Exhausted CD8 T Cells. Immunity 48:1029-1045.e5
Liu, Xiao; Duan, Xiaoqiong; Holmes, Jacinta A et al. (2018) A novel lncRNA regulates HCV infection through IFI6. Hepatology :
Chen, Gang; Huang, Alexander C; Zhang, Wei et al. (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560:382-386
Ussher, James E; Willberg, Christian B; Klenerman, Paul (2018) MAIT cells and viruses. Immunol Cell Biol 96:630-641
Bengsch, Bertram; Ohtani, Takuya; Herati, Ramin Sedaghat et al. (2018) Deep immune profiling by mass cytometry links human T and NK cell differentiation and cytotoxic molecule expression patterns. J Immunol Methods 453:3-10
Stelekati, Erietta; Chen, Zeyu; Manne, Sasikanth et al. (2018) Long-Term Persistence of Exhausted CD8 T Cells in Chronic Infection Is Regulated by MicroRNA-155. Cell Rep 23:2142-2156
Kurioka, Ayako; van Wilgenburg, Bonnie; Javan, Reza Rezaei et al. (2018) Diverse Streptococcus pneumoniae Strains Drive a Mucosal-Associated Invariant T-Cell Response Through Major Histocompatibility Complex class I-Related Molecule-Dependent and Cytokine-Driven Pathways. J Infect Dis 217:988-999
Qu, Chen; Zheng, Dandan; Li, Sai et al. (2018) Tyrosine kinase SYK is a potential therapeutic target for liver fibrosis. Hepatology :

Showing the most recent 10 out of 173 publications