Enteric infections, including typhoid fever, are a major source of morbidity and mortality worldwide. The lack of information regarding the immunological correlates of protection against these organisms in humans has hindered the greatly needed development of new and improved vaccines against these important pathogens. The availability of unique specimens from subjects immunized and/or challenged with wild-type (wt) Salmonella enterlca serovar Typhi (S. Typhi), as well as specimens from subjects immunized with the licensed Ty21a oral typhoid vaccine in conjunction with novel technologies and instrumentation (e.g., mass flow cytometry) provide an unprecedented opportunity to investigate the key immunological responses involved in protection at both the systemic and mucosal levels. Our overarching hypothesis is that the delicate homeostasis between the effector and regulatory arms of the immune system, both systemically and in the gut mucosa, plays a critical role in protection from typhoid fever in humans. To begin to understand the complex interaction of various cell subsets of the systemic and mucosal immune systems that may play a role in protection against S. Typhi in humans, we will evaluate the following hypotheses: (1) Protection from S. Typhi disease in a human challenge model is determined by the balance of effector and regulatory responses; (2) Protection induced by immunization with attenuated S. Typhi strains is determined by the balance of effector and regulatory responses; (3) Increased levels of mucosa-associated invariant T (MAIT) cell activation and exhaustion following exposure to S. Typhi antigens contributes to the development of typhoid fever; and (4) Oral vaccination with Ty21a elicits immune responses at the mucosal and systemic levels that differ in magnitude and characteristics. Furthermore, we will integrate the immunological data generated in this project with the composition and functional properties of the gut microbiota (Research Project 2) and the mechanistic studies of mediators of protection at the mucosal level in an in vitro 3-D bioengineered human intestinal tissue model (Research Project 3). These studies will address critical gaps in knowledge and provide the most comprehensive investigation of the correlates of protection against S. Typhi to date which may also be broadly applicable to other enteric pathogens.

Public Health Relevance

The goal of the studies proposed in this application is to identify the immunological correlates of protection against S. Typhi, a human enteric pathogen of great public health significance. This work will take advantage of unique human specimens (including a wild-type S. Typhi human challenge model) and novel technologies and instrumentation to advance our understanding of the systemic and mucosal immune responses responsible for protection against S. Typhi.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI082655-08
Application #
9068788
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
8
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Maryland Baltimore
Department
Type
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Haney, Douglas J; Lock, Michael D; Gurwith, Marc et al. (2018) Lipopolysaccharide-specific memory B cell responses to an attenuated live cholera vaccine are associated with protection against Vibrio cholerae infection. Vaccine 36:2768-2773
Davis, Courtney L; Wahid, Rezwanul; Toapanta, Franklin R et al. (2018) A clinically parameterized mathematical model of Shigella immunity to inform vaccine design. PLoS One 13:e0189571
Toapanta, Franklin R; Bernal, Paula J; Kotloff, Karen L et al. (2018) T cell mediated immunity induced by the live-attenuated Shigella flexneri 2a vaccine candidate CVD 1208S in humans. J Transl Med 16:61
Zhang, Yan; Brady, Arthur; Jones, Cheron et al. (2018) Compositional and Functional Differences in the Human Gut Microbiome Correlate with Clinical Outcome following Infection with Wild-Type Salmonella enterica Serovar Typhi. MBio 9:
Senger, Stefania; Ingano, Laura; Freire, Rachel et al. (2018) Human Fetal-Derived Enterospheres Provide Insights on Intestinal Development and a Novel Model to Study Necrotizing Enterocolitis (NEC). Cell Mol Gastroenterol Hepatol 5:549-568
Sztein, Marcelo B (2018) Is a Human CD8 T-Cell Vaccine Possible, and if So, What Would It Take? CD8 T-Cell-Mediated Protective Immunity and Vaccination against Enteric Bacteria. Cold Spring Harb Perspect Biol 10:
Salerno-Gonçalves, Rosângela; Tettelin, Hervé; Lou, David et al. (2017) Use of a novel antigen expressing system to study the Salmonella enterica serovar Typhi protein recognition by T cells. PLoS Negl Trop Dis 11:e0005912
Booth, Jayaum S; Patil, Seema A; Ghazi, Leyla et al. (2017) Systemic and Terminal Ileum Mucosal Immunity Elicited by Oral Immunization With the Ty21a Typhoid Vaccine in Humans. Cell Mol Gastroenterol Hepatol 4:419-437
Fresnay, Stephanie; McArthur, Monica A; Magder, Laurence S et al. (2017) Importance ofSalmonellaTyphi-Responsive CD8+ T Cell Immunity in a Human Typhoid Fever Challenge Model. Front Immunol 8:208
Salerno-Goncalves, Rosângela; Luo, David; Fresnay, Stephanie et al. (2017) Challenge of Humans with Wild-type Salmonella enterica Serovar Typhi Elicits Changes in the Activation and Homing Characteristics of Mucosal-Associated Invariant T Cells. Front Immunol 8:398

Showing the most recent 10 out of 59 publications