Generation of autoantibodies is a hallmark of autoimmune diseases. Recent data in humans and mice show that overrepresentation of T follicular helper (Tfh) cells, a CD4+ T cell subset specialized in helping B cells in germinal centers (GCs), is associated with autoimmunity. Yet, the immune mechanisms that cause exaggerated Tfh response in human autoimmune diseases remain largely unknown. Our preliminary studies suggest a common mechanism associated with exaggerated Tfh responses in human autoimmune disease. We identified two candidate factors derived from antigen-presenting cells promoting Tfh responses. Altered Tfh response in autoimmune diseases might be also associated with dysregulated of T follicular regulatory (Tfr) cells that originate from thymus-derived regulatory T cells (Tregs). In this Collaborative Project, we hypothesize that Altered APCs promotes Tfh response while suppressing Tfr response thereby contributing to the pathogenesis of human autoimmune diseases. We will share our established methods for the studies of human Tfh cells to other Centers, so that newly diagnosed untreated patients with a broad range of autoimmune diseases can be analyzed across the Centers.
The specific aims are AIM 1: To determine the alteration in Tfh cell subsets in blood in autoimmune diseases.
AIM 2 : To determine the alteration in Tfh cells and CD11c+ APCs in inflammatory tissues in autoimmune diseases.
AIM 3 : To determine whether APCs in inflammatory tissues are capable of inducing naive and memory CD4+ T cells to differentiate into Tfh cells, and AIM 4: To determine whether and how Tfr response is altered in autoimmune diseases. In conclusion, we might be able to reveal immunological pathways that cause altered Tfh/GC response shared by different autoimmune diseases as well as unique one to each disease.

Public Health Relevance

Autoimmune patients, especially with SLE, continue to have unmet medical needs, necessitating in-depth studies enabling increased understanding of disease pathophysiology and identification of novel therapeutic targets. Our long-term goal is to discover novel target(s) for treatment/prevention of human autoimmune diseases by elucidating the immunological mechanisms associate with dysregulated Tfh/GC responses.

National Institute of Health (NIH)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Baylor Research Institute
United States
Zip Code
Weng, Leiyun; Mitoma, Hiroki; Trichot, Coline et al. (2014) The E3 ubiquitin ligase tripartite motif 33 is essential for cytosolic RNA-induced NLRP3 inflammasome activation. J Immunol 193:3676-82
Rodriguez-Pla, Alicia; Patel, Pinakeen; Maecker, Holden T et al. (2014) IFN priming is necessary but not sufficient to turn on a migratory dendritic cell program in lupus monocytes. J Immunol 192:5586-98
Lu, Hongbo; Lu, Ning; Weng, Leiyun et al. (2014) DHX15 senses double-stranded RNA in myeloid dendritic cells. J Immunol 193:1364-72
Chiche, Laurent; Jourde-Chiche, NoƩmie; Whalen, Elizabeth et al. (2014) Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures. Arthritis Rheumatol 66:1583-95
Schmitt, Nathalie; Bentebibel, Salah-Eddine; Ueno, Hideki (2014) Phenotype and functions of memory Tfh cells in human blood. Trends Immunol 35:436-42
Schmitt, Nathalie; Liu, Yang; Bentebibel, Salah-Eddine et al. (2014) The cytokine TGF-? co-opts signaling via STAT3-STAT4 to promote the differentiation of human TFH cells. Nat Immunol 15:856-65
Banchereau, Romain; Cepika, Alma-Martina; Pascual, Virginia (2013) Systems approaches to human autoimmune diseases. Curr Opin Immunol 25:598-605
Bentebibel, Salah-Eddine; Lopez, Santiago; Obermoser, Gerlinde et al. (2013) Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination. Sci Transl Med 5:176ra32
Schmitt, Nathalie; Bustamante, Jacinta; Bourdery, Laure et al. (2013) IL-12 receptor ?1 deficiency alters in vivo T follicular helper cell response in humans. Blood 121:3375-85
Schmitt, Nathalie; Ueno, Hideki (2013) Human T follicular helper cells: development and subsets. Adv Exp Med Biol 785:87-94

Showing the most recent 10 out of 18 publications