Hepatitis C virus (HCV) infection is the leading cause of liver-related morbidity and mortality in the United States, with an increasing number of deaths due to HCV-associated cirrhosis and liver cancer predicted over the next two decades. Spontaneous clearance is the best outcome of infection, but this occurs in only approximately 15-45% of patients. The goal of this project is to determine the mechanisms of effective adaptive immunity in treatment-mediated clearance of HCV infection. It seems clear that adapfive responses, particulariy CD8* cytotoxic T lymphocyte (CTL) responses, are necessary but not sufficient for HCV clearance. Subjects who respond to antiviral treatment, for example, have a higher frequency of antiviral CTL than do non-responders, but pre-exisfing CTL are insufficient to clear chronic HCV infection. Furthermore, in acute infecfion, effective CTL responses cannot be established in the absence of CD4* T cell help. We speculate that the contributions of CD4* T cells, interferon-a (IFNa), and ribavirin to CDS* T cell responses are linked at the level of the antigen-presenfing cell (APC). We hypothesize that IFNa and ribavirin contribute to HCV clearance in part via an infiuence on the quality of adaptive immune responses that is mediated by effects on APCs and cells of the innate immune system, including NK cells (evaluated in Project 1). In the experiments of this project, this hypothesis will be addressed using specimens of peripheral blood and liver biopsies from pafients in a retrospecfive case-control study and a prospective study of response to standard-of-care treatment of HCV infection. We wish to determine whether a successful response to antiviral treatment for HCV infecfion is related to: (1) enhancement of the polyfuncfionality and maturafion phenotype of CD4''and CD8* T cells;(2) improved DC function and decreased induction of T regulatory mechanisms (e.g., inducfion of T-regs, indoleamine-2,3-dioxygenase, PD-1, etc);and/ or (3) high titers of total anti-E1/E2 anfibodies or of neutralizing antibodies against HCV. Given the temporal relationship between these parameters and the response to treatment, we may be able to ascertain which are likely to be causal. Viewed in conjunction with the experiments of Project 2 (on innate immunity), we will also be able to better understand the interplay between innate and adaptive immunity in treatment response to HCV.

Public Health Relevance

Hepatitis C virus infects over 170 million people woridwide, imposing enormous social and economic costs. Surprisingly, the virus persists in many people despite inducfion of immune responses that might be expected to clear the virus. An understanding of the immune mechanisms underiying treatment mediated clearance could provide opportunities to improve existing treatments for HCV infection, to develop new treatments based on new drug targets, or to develop effective prophylactic vaccines.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI088790-03
Application #
8376379
Study Section
Special Emphasis Panel (ZAI1-BP-M)
Project Start
2012-06-01
Project End
2015-05-31
Budget Start
2012-06-01
Budget End
2013-05-31
Support Year
3
Fiscal Year
2012
Total Cost
$240,125
Indirect Cost
$95,995
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Méndez-Lagares, Gema; Lu, Ding; Chen, Connie et al. (2018) Memory T Cell Proliferation before Hepatitis C Virus Therapy Predicts Antiviral Immune Responses and Treatment Success. J Immunol 200:1124-1132
Dai, Ke-Zheng; Ryan, James C; Naper, Christian et al. (2018) Identification of MHC Class Ib Ligands for Stimulatory and Inhibitory Ly49 Receptors and Induction of Potent NK Cell Alloresponses in Rats. J Immunol 200:2847-2859
Price, Jennifer C; Murphy, Rosemary C; Shvachko, Valentina A et al. (2014) Effectiveness of telaprevir and boceprevir triple therapy for patients with hepatitis C virus infection in a large integrated care setting. Dig Dis Sci 59:3043-52
Nabekura, Tsukasa; Kanaya, Minoru; Shibuya, Akira et al. (2014) Costimulatory molecule DNAM-1 is essential for optimal differentiation of memory natural killer cells during mouse cytomegalovirus infection. Immunity 40:225-34
Hartigan-O'Connor, Dennis J; Lin, Din; Ryan, James C et al. (2014) Monocyte activation by interferon ? is associated with failure to achieve a sustained virologic response after treatment for hepatitis C virus infection. J Infect Dis 209:1602-12
Manos, M Michele; Ho, Chanda K; Murphy, Rosemary C et al. (2013) Physical, social, and psychological consequences of treatment for hepatitis C : a community-based evaluation of patient-reported outcomes. Patient 6:23-34
Cozen, Myrna L; Ryan, James C; Shen, Hui et al. (2013) Nonresponse to interferon-? based treatment for chronic hepatitis C infection is associated with increased hazard of cirrhosis. PLoS One 8:e61568