Malaria is the most important vector-borne disease in Southeast Asia. It is estimated that the region accounts for 30% of the global malaria morbidity and 8% of the global mortality. Malaria epidemiology in this region is characterized by high spatial and temporal heterogeneity in falciparum and vivax malaria incidences, and by the presence of diverse vector species with different vectorial capacities for the parasites. The sympatric occurrence of multiple vector species with distinct bionomics and vectorial capacity complicates our understanding of malaria transmission and hinders malaria control efforts. Currently, pyrethroid insecticide-treated nets and pyrethroid-based indoor residual spray are the primary vector control tools in the region. However, the evolution and spread of insecticide resistance and drug resistance reduce the efficacy of these tools. Therefore, understanding the vectorial system and developing new vector control and resistance monitoring tools are of paramount importance. The overarching objectives of this project are to understand the vectorial system in diverse ecological and epidemiological settings in China, Thailand and least studied Myanmar, and to develop new vector control tools to reduce malaria transmission. To achieve these objectives, we have developed five specific aims: 1) to determine community structure of malaria vectors and the impact of anthropogenic environmental changes on vector community structure;2) to examine the population genetic structure and bionomics of major malaria vector species;3) to develop new olfaction-based tools for control and transmission surveillance of the major malaria vectors;4) to examine the utility of a new formulation of microbial larvicide and entomopathogenic fungi for adult mosquito control;and 5) to determine pyrethroid resistance mechanisms and develop resistance monitoring tools for the major malaria vectors in the region. We anticipate the new knowledge and new tools from this project will greatly contribute to the malaria control program in Southeast Asia.

Public Health Relevance

Vector control is an integral component of malaria control. SE Asia is characterized by the presence of multiple vector species with different distribution, bionomics and vectorial capacity. We will fill the knowledge gaps in vector biology in this region through innovative research on vector community structure, population genetics, insecticide resistance, and development of novel tools for vector surveillance and control.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI089672-04
Application #
8500141
Study Section
Special Emphasis Panel (ZAI1-AWA-M)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
4
Fiscal Year
2013
Total Cost
$467,248
Indirect Cost
$55,495
Name
Pennsylvania State University
Department
Type
DUNS #
003403953
City
University Park
State
PA
Country
United States
Zip Code
16802
Wang, Meilian; Siddiqui, Faiza Amber; Fan, Qi et al. (2016) Limited genetic diversity in the PvK12 Kelch protein in Plasmodium vivax isolates from Southeast Asia. Malar J 15:537
Liu, Huaie; Feng, Guohua; Zeng, Weilin et al. (2016) A more appropriate white blood cell count for estimating malaria parasite density in Plasmodium vivax patients in northeastern Myanmar. Acta Trop 156:152-6
Zhu, Xiaotong; Zhao, Zhenjun; Feng, Yonghui et al. (2016) Genetic diversity of the Plasmodium falciparum apical membrane antigen I gene in parasite population from the China-Myanmar border area. Infect Genet Evol 39:155-62
Wang, Qinghui; Zhao, Zhenjun; Zhang, Xuexing et al. (2016) Naturally Acquired Antibody Responses to Plasmodium vivax and Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) C-Terminal 19 kDa Domains in an Area of Unstable Malaria Transmission in Southeast Asia. PLoS One 11:e0151900
Wang, Xiaoming; Zhou, Guofa; Zhong, Daibin et al. (2016) Life-table studies revealed significant effects of deforestation on the development and survivorship of Anopheles minimus larvae. Parasit Vectors 9:323
Ménard, Didier; Khim, Nimol; Beghain, Johann et al. (2016) A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms. N Engl J Med 374:2453-64
Hu, Yue; Zhou, Guofa; Ruan, Yonghua et al. (2016) Seasonal dynamics and microgeographical spatial heterogeneity of malaria along the China-Myanmar border. Acta Trop 157:12-9
Guo, Suqin; Zhang, Wei; He, Lishan et al. (2016) Rapid evaluation of artesunate quality with a specific monoclonal antibody-based lateral flow dipstick. Anal Bioanal Chem 408:6003-8
Xu, Xin; Zhou, Guofa; Wang, Ying et al. (2016) Microgeographic Heterogeneity of Border Malaria During Elimination Phase, Yunnan Province, China, 2011-2013. Emerg Infect Dis 22:1363-70
Guo, Suqin; He, Lishan; Tisch, Daniel J et al. (2016) Pilot testing of dipsticks as point-of-care assays for rapid diagnosis of poor-quality artemisinin drugs in endemic settings. Trop Med Health 44:15

Showing the most recent 10 out of 88 publications