Malaria remains one of the most important global health challenges, with an estimated 3 billion people at risk of infection, leading to approximately 250 million cases and 1 million deaths each year. The greatest burden of malaria, by far, remains in the heartland of Africa, characterized by large contiguous areas of high transmission, low coverage of proven control interventions, and limited Infrastructure to monitor trends in malaria burden and measure the impact of interventions. The overall purpose of this program will be to establish an International Center of Excellence In Malaria Research in Uganda and perform comprehensive surveillance studies aimed to improve understanding of the disease and measure the impact of population-level control interventions. Uganda provides an ideal environment for this program, where malaria covers a wide range of epidemiological settings. Studies will be conducted in six sentinel sites, ranging from areas of relatively low transmission intensity to areas with some of the highest transmission intensities recorded in the world. Our comprehensive approach to surveillance will bring together expertise from multiple disciplines to collect data across multiple levels, reflecting the complex nature of interactions between the mosquito vector, malaria parasite and human host. The program will consist of 4 research projects linked together in an integrated manner to maximize scientific discovery. Research project 1 will compare different malaria surveillance methodologies and measure the impact and cost-effectiveness of control interventions. Research project 2 will use a modeling approach to evaluate the optimal suites of malaria control interventions in different transmission settings. Research project 3 will investigate the role of immunological assays for estimating transmission intensity and predicting disease risk. Research project 4 will identify markers of antimalarial drug and insecticide resistance and investigate the role of these markers as malaria surveillance tools. In addition to the research activities described, this program will place a strong emphasis on local training and capacity building, the transfer of technology, and building strong relationships between researchers and policy makers.

Public Health Relevance

Recent increases in funding and resources have provided Africa with the opportunity to greatly reduce the burden of malaria. However, gaps in knowledge remain as to the optimal approaches to malaria control in different epidemiological setting. This program will address these gaps by performing comprehensive surveillance studies to improve understanding of malaria and measure the impact of control interventions.

National Institute of Health (NIH)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Program Officer
Rao, Malla R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Internal Medicine/Medicine
Schools of Medicine
San Francisco
United States
Zip Code
Wilding, C S; Weetman, D; Rippon, E J et al. (2015) Parallel evolution or purifying selection, not introgression, explains similarity in the pyrethroid detoxification linked GSTE4 of Anopheles gambiae and An. arabiensis. Mol Genet Genomics 290:201-15
Nankoberanyi, Sheila; Mbogo, George W; LeClair, Norbert P et al. (2014) Validation of the ligase detection reaction fluorescent microsphere assay for the detection of Plasmodium falciparum resistance mediating polymorphisms in Uganda. Malar J 13:95
Tatem, Andrew J; Huang, Zhuojie; Narib, Clothilde et al. (2014) Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning. Malar J 13:52
Perkins, T Alex; Garcia, Andres J; Paz-Soldán, Valerie A et al. (2014) Theory and data for simulating fine-scale human movement in an urban environment. J R Soc Interface 11:
Conrad, Melissa D; Bigira, Victor; Kapisi, James et al. (2014) Polymorphisms in K13 and falcipain-2 associated with artemisinin resistance are not prevalent in Plasmodium falciparum isolated from Ugandan children. PLoS One 9:e105690
Tatem, Andrew J (2014) Mapping population and pathogen movements. Int Health 6:5-11
Johnston, Geoffrey L; Gething, Peter W; Hay, Simon I et al. (2014) Modeling within-host effects of drugs on Plasmodium falciparum transmission and prospects for malaria elimination. PLoS Comput Biol 10:e1003434
Deville, Pierre; Linard, Catherine; Martin, Samuel et al. (2014) Dynamic population mapping using mobile phone data. Proc Natl Acad Sci U S A 111:15888-93
Tatem, Andrew J (2014) Mapping the denominator: spatial demography in the measurement of progress. Int Health 6:153-5
Gething, Peter W; Battle, Katherine E; Bhatt, Samir et al. (2014) Declining malaria in Africa: improving the measurement of progress. Malar J 13:39

Showing the most recent 10 out of 40 publications