The long-term project goal is to provide the evidence-base for the development of sustainable strategies to further reduce malaria transmission in southern Africa and assess the feasibility of malaria elimination through an integrated understanding of local malaria epidemiology, vector biology, parasite population structure and community and household-level beliefs and actions. Building upon the Johns Hopkins Malaria Research Institute field site in Choma District in rural southern Zambia as a regional center of excellence in malaria research, we propose to investigate the changing epidemiology of malaria in three distinct transmission settings in southern Africa reflecting different stages of malaria control (successful - Choma, ineffective - Nchelenge, resurgent - Mutasa) through prospective hospital, clinic and community-based studies to address the following:
Aim 1) Measure changes in spatio-temporal patterns of malaria parasitemia in three distinct epidemiological settings in southern Africa and identify individual, household and ecological risk factors for symptomatic and asymptomatic parasitemia in each setting;
Aim 2) Identify individual, household and ecological risk factors for gametocyte carriage during high and low transmission seasons in three distinct epidemiological settings in southern Africa;
Aim 3) Measure spatio-temporal changes in age specific antibody responses to Plasmodium falciparium antigens using sero-epidemiological surveys in the three regions of southern Africa;
Aim 4) Identify targeted, risk-based combinations of malaria control strategies that are cost-effective and acceptable to the community using mathematical modeling approaches to optimize decision algorithms based on locally available survey and surveillance data. Detailed understanding of malaria transmission dynamics in three different epidemiological settings will thus inform the development of locally-adapted, cost-effective and community-supported strategies for malaria control. These epidemiological investigations will be closely linked with studies of spatio-temporal changes in the anopheline vector and Plasmodium population structure in response to ecological changes and malaria control efforts. This integrated, evidence-based approach to malaria control will form the foundation for a regional center of excellence for malaria research in southern Africa and the foundation for regional malaria elimination.

Public Health Relevance

The burden of malaria has decreased dramatically in parts of sub-Saharan Africa within the past several years, raising the possibility of regional malaria elimination. Our research activities will provide the detailed knowledge of malaria transmission in southern Africa necessary to develop locally-adapted, targeted control strategies for the next stage of malaria control and possibly the regional elimination of malaria.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-AWA-M)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
United States
Zip Code
Comfort, Alison B; van Dijk, Janneke H; Mharakurwa, Sungano et al. (2014) Association between malaria control and paediatric blood transfusions in rural Zambia: an interrupted time-series analysis. Malar J 13:383
Mharakurwa, Sungano; Daniels, Rachel; Scott, Alan et al. (2014) Pre-amplification methods for tracking low-grade Plasmodium falciparum populations during scaled-up interventions in Southern Zambia. Malar J 13:89
Ricotta, Emily E; Frese, Steven A; Choobwe, Cornelius et al. (2014) Evaluating local vegetation cover as a risk factor for malaria transmission: a new analytical approach using ImageJ. Malar J 13:94
Liu, Kun; Dong, Yuemei; Huang, Yuzheng et al. (2013) Impact of trehalose transporter knockdown on Anopheles gambiae stress adaptation and susceptibility to Plasmodium falciparum infection. Proc Natl Acad Sci U S A 110:17504-9
Norris, Laura C; Norris, Douglas E (2013) Heterogeneity and changes in inequality of malaria risk after introduction of insecticide-treated bed nets in Macha, Zambia. Am J Trop Med Hyg 88:710-7
Tsujimoto, Hitoshi; Liu, Kun; Linser, Paul J et al. (2013) Organ-specific splice variants of aquaporin water channel AgAQP1 in the malaria vector Anopheles gambiae. PLoS One 8:e75888
Promeneur, Dominique; Lunde, Lisa Kristina; Amiry-Moghaddam, Mahmood et al. (2013) Protective role of brain water channel AQP4 in murine cerebral malaria. Proc Natl Acad Sci U S A 110:1035-40
Moss, William J; Norris, Douglas E; Mharakurwa, Sungano et al. (2012) Challenges and prospects for malaria elimination in the Southern Africa region. Acta Trop 121:207-11
Mharakurwa, Sungano; Thuma, Philip E; Norris, Douglas E et al. (2012) Malaria epidemiology and control in Southern Africa. Acta Trop 121:202-6
Mharakurwa, Sungano; Kumwenda, Taida; Mkulama, Mtawa A P et al. (2011) Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes. Proc Natl Acad Sci U S A 108:18796-801