The Project Director, Dr Rathod, will rely on the extensive infrastructure of his home institution, The University of Washington, for normal management (eg interactions with NIH and US institutions subcontractors). However, given the complexity ofthe project particularly in South Asia, the PD will emply a experienced, professional, part time Project Manager (50% effort) for the first two years ofthe Project. The Manager will go to 100% time commitment as the Project scales up in South Asia and the US in years 3-7. The South Asian part of project management will be handled through a new and innovative arrangement All South Asian contracts, and their administration, will flow through Dr Narayansamy's unique organization that has a team of business managers, scientific project managers, and technology support staff. Their scrupulous track record, and their familiarity with business and political norms in South Asia, will allow the main ICEMR scientific team to focus on the research and training aspects ofthe project.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI089688-04
Application #
8501311
Study Section
Special Emphasis Panel (ZAI1-AWA-M)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
4
Fiscal Year
2013
Total Cost
$341,533
Indirect Cost
$60,944
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Rangel, Gabriel W; Clark, Martha A; Kanjee, Usheer et al. (2018) Enhanced Ex Vivo Plasmodium vivax Intraerythrocytic Enrichment and Maturation for Rapid and Sensitive Parasite Growth Assays. Antimicrob Agents Chemother 62:
Patankar, Swati; Sharma, Shobhona; Rathod, Pradipsinh K et al. (2018) Malaria in India: The Need for New Targets for Diagnosis and Detection of Plasmodium vivax. Proteomics Clin Appl 12:e1700024
Mohanty, Ajeet Kumar; Nina, Praveen Balabaskaran; Ballav, Shuvankar et al. (2018) Susceptibility of wild and colonized Anopheles stephensi to Plasmodium vivax infection. Malar J 17:225
White, John; Rathod, Pradipsinh K (2018) Indispensable malaria genes. Science 360:490-491
Narayan, Aishwarya; Mastud, Pragati; Thakur, Vandana et al. (2018) Heterologous expression in Toxoplasma gondii reveals a topogenic signal anchor in a Plasmodium apicoplast protein. FEBS Open Bio 8:1746-1762
Balabaskaran Nina, Praveen; Mohanty, Ajeet Kumar; Ballav, Shuvankar et al. (2017) Dynamics of Plasmodium vivax sporogony in wild Anopheles stephensi in a malaria-endemic region of Western India. Malar J 16:284
Shaw-Saliba, Kathryn; Clarke, David; Santos, Jorge M et al. (2016) Infection of laboratory colonies of Anopheles mosquitoes with Plasmodium vivax from cryopreserved clinical isolates. Int J Parasitol 46:679-83
White 3rd, John; Mascarenhas, Anjali; Pereira, Ligia et al. (2016) In vitro adaptation of Plasmodium falciparum reveal variations in cultivability. Malar J 15:33
Hostetler, Jessica B; Lo, Eugenia; Kanjee, Usheer et al. (2016) Independent Origin and Global Distribution of Distinct Plasmodium vivax Duffy Binding Protein Gene Duplications. PLoS Negl Trop Dis 10:e0005091
Lim, Caeul; Pereira, Ligia; Saliba, Kathryn Shaw et al. (2016) Reticulocyte Preference and Stage Development of Plasmodium vivax Isolates. J Infect Dis 214:1081-4

Showing the most recent 10 out of 43 publications