Influenza causes significant morbidity and mortality in hematopoietic cell transplantation (HCT) recipients, who are immunocompromised. Vaccination is the most effective way of preventing influenza but is less effective in immunocompromised patients than in healthy individuals. Thus, there is a need to understand the mechanisms underlying poor vaccine responses as well as establish biomarkers of immune competence. We surmise that understanding the relationships between antigen presenting cells (including monocytes and DCs), influenza-specific CD4+ T cells and antibody responses elicited by vaccination may enable a more rational design of vaccination strategies and timing in this group of patients. All studies to date have shown diminished CD4+ T cell numbers and proliferative T cell responses even at 12 months post transplant. We will utilize a systems biology analysis to define the immune alteration underlying the diminished responses to influenza vaccines in this group of patients. This will form a ground for development of new immuneenhancing strategies. We will focus on systems biology analysis of three cellular compartments that are essential for the generation and the quality of antibody responses to vaccines - the inducers (dendritic cells/monocytes and their subsets);regulators (T follicular helper cells - Tfh), and effectors (B cells). To date, there are no studies describing a systematic and comprehensive analysis of the reconstitution of these three blood compartments in patients who have undergone autologous HCT. Moreover, Tfh immune reconstitution after transplant (allogeneic or autologous) has not been examined for the identification of these cells until very recently. The alteration(s) in either or all of these compartments will have an impact on the quality of flu vaccine responses after HCT. Thus, our study presents an opportunity to analyze, at a systems level, the responses to flu vaccine in patients who have undergone HCT.
Three aims are proposed:
AIM 1 : To establish the cellular and transcriptional signatures of response to flu vaccination in patients who underwent autologous HCT and in age-matched healthy volunteers.
AIM 2 : To establish the kinetics of blood DC subsets, Tfh and B cell compartments reconstitution in patients who underwent autologous HCT.
AIM 3 : To establish the functional competence of blood DC subsets and Tfh cells in patients who underwent autologous HCT.

Public Health Relevance

People who have bone marrow transplants are susceptible to numerous diseases due to their immunocompromised state. Compounding this is the fact that their immune system doesn't induce strong protective innmunity upon vaccination. This project will use a systems biology approach to examine the immune responses in these patients after vaccination with the goal of improving vaccines strategies for these patients.

National Institute of Health (NIH)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Baylor Research Institute
United States
Zip Code
Yu, Chun I; Becker, Christian; Metang, Patrick et al. (2014) Human CD141+ dendritic cells induce CD4+ T cells to produce type 2 cytokines. J Immunol 193:4335-43
Banchereau, Romain; Baldwin, Nicole; Cepika, Alma-Martina et al. (2014) Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines. Nat Commun 5:5283
Chaussabel, Damien; Baldwin, Nicole (2014) Democratizing systems immunology with modular transcriptional repertoire analyses. Nat Rev Immunol 14:271-80
Rajsbaum, Ricardo; Garcia-Sastre, Adolfo; Versteeg, Gijs A (2014) TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. J Mol Biol 426:1265-84
Cao, Raquel G; Suarez, Nicolas M; Obermoser, Gerlinde et al. (2014) Differences in antibody responses between trivalent inactivated influenza vaccine and live attenuated influenza vaccine correlate with the kinetics and magnitude of interferon signaling in children. J Infect Dis 210:224-33
Schotsaert, Michael; GarcĂ­a-Sastre, Adolfo (2014) Influenza vaccines: a moving interdisciplinary field. Viruses 6:3809-26
Alsina, Laia; Israelsson, Elisabeth; Altman, Matthew C et al. (2014) A narrow repertoire of transcriptional modules responsive to pyogenic bacteria is impaired in patients carrying loss-of-function mutations in MYD88 or IRAK4. Nat Immunol 15:1134-42
Ovsyannikova, Inna G; White, Sarah J; Albrecht, Randy A et al. (2014) Turkey versus guinea pig red blood cells: hemagglutination differences alter hemagglutination inhibition responses against influenza A/H1N1. Viral Immunol 27:174-8
Li, Lily; Lin, Marvin; Krassilnikova, Maria et al. (2014) Effect of cholecalciferol supplementation on inflammation and cellular alloimmunity in hemodialysis patients: data from a randomized controlled pilot trial. PLoS One 9:e109998
Tsang, John S; Schwartzberg, Pamela L; Kotliarov, Yuri et al. (2014) Global analyses of human immune variation reveal baseline predictors of postvaccination responses. Cell 157:499-513

Showing the most recent 10 out of 33 publications