Antigen-specific antibody quantification will be required for Influenza and Hepatitis B antigens that are vaccine components, as well as non-vaccine Influenza antigens to define cross-reactivity. Measurements for standardized hepatitis B vaccine antigens will be through medical service providers. However, a careful and thorough definition of influenza antigens is central to this proposal. The core will have to accurately quantify serum antibody titers against: i) Flu vaccine component antigens, ii) Flu non-vaccine component antigens, and iii) hemagglutinins from different Flu strains. This core will support the U19 program through four aims:
Aim 1 : Quantification of antigen-specific antibodies and antigen-specific B cells. The core will measure with high fidelity serum antibodies against Influenza antigens. This will support Project 1, 2, 3, 4, and 5.
Aim 2 : Characterization of anti-Influenza neutralizing antibodies. The core will score neutralizing anti- Influenza serum antibody levels and appraise their cross-reactivity. This will support Project 1, 2, 3, 4, and 5.
Aim 3 : Measurement of serum cytokine and chemokine levels. The core will measure the levels of multiple cytokines and chemokines in sera and culture supernatants. This will support Project 1,2,3, 4, and 5.
Aim 4 : Detection of antibodies against self antigens. The core will perform proteome-wide surveys of auto-antibodies for Project 3. This will support Project 4.
Aim 5 : Development of novel biomarker detection reagents. The core will develop novel protein and antibody-based biomarkers for validation of discoveries made through all the Project areas. This will support Project 1, 2, 3,4, and 5.

Public Health Relevance

This core will support the U19 program by accurately quantifying serum antibody titers against: i) Flu vaccine component antigens, ii) Flu non-vaccine component antigens, and iii) hemagglutinins from different Flu strains. It will also measure serum cytokines and develop novel biomarker detection methods.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI089987-05
Application #
8691700
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Baylor Research Institute
Department
Type
DUNS #
City
Dallas
State
TX
Country
United States
Zip Code
75204
Cepika, Alma-Martina; Banchereau, Romain; Segura, Elodie et al. (2017) A multidimensional blood stimulation assay reveals immune alterations underlying systemic juvenile idiopathic arthritis. J Exp Med 214:3449-3466
Athale, Shruti; Banchereau, Romain; Thompson-Snipes, LuAnn et al. (2017) Influenza vaccines differentially regulate the interferon response in human dendritic cell subsets. Sci Transl Med 9:
Schotsaert, Michael; García-Sastre, Adolfo (2017) Inactivated influenza virus vaccines: the future of TIV and QIV. Curr Opin Virol 23:102-106
Silvin, Aymeric; Yu, Chun I; Lahaye, Xavier et al. (2017) Constitutive resistance to viral infection in human CD141+ dendritic cells. Sci Immunol 2:
Sandoval, Carmen; Barrera, Aldo; Ferrés, Marcela et al. (2016) Infection in Health Personnel with High and Low Levels of Exposure in a Hospital Setting during the H1N1 2009 Influenza A Pandemic. PLoS One 11:e0147271
Heinonen, Santtu; Jartti, Tuomas; Garcia, Carla et al. (2016) Rhinovirus Detection in Symptomatic and Asymptomatic Children: Value of Host Transcriptome Analysis. Am J Respir Crit Care Med 193:772-82
Blohmke, Christoph J; Darton, Thomas C; Jones, Claire et al. (2016) Interferon-driven alterations of the host's amino acid metabolism in the pathogenesis of typhoid fever. J Exp Med 213:1061-77
Schmitt, Nathalie; Liu, Yang; Bentebibel, Salah-Eddine et al. (2016) Molecular Mechanisms Regulating T Helper 1 versus T Follicular Helper Cell Differentiation in Humans. Cell Rep 16:1082-1095
Bentebibel, Salah-Eddine; Khurana, Surender; Schmitt, Nathalie et al. (2016) ICOS(+)PD-1(+)CXCR3(+) T follicular helper cells contribute to the generation of high-avidity antibodies following influenza vaccination. Sci Rep 6:26494
Suarez, Nicolas M; Bunsow, Eleonora; Falsey, Ann R et al. (2015) Superiority of transcriptional profiling over procalcitonin for distinguishing bacterial from viral lower respiratory tract infections in hospitalized adults. J Infect Dis 212:213-22

Showing the most recent 10 out of 57 publications