A central challenge for immune profiling, particularly for monitoring vaccine efficacy or disease progression, has been the identification of measurable parameters that can predict the outcome of an immune response. Given the heterogeneity of individual responses, we expect that the characteristic factors that define a healthy immune system, and its response to antigenic perturbations, are manifold rather than singular. We hypothesize that integrative analysis of data from individuals responding to vaccines or viral infections will allow for inference of causal chains of immunological processes associated with clinically defined outcomes (responsiveness, disease severity). Research Project 3 will focus on interrogating temporal behaviors of immune responses in diverse cohorts using novel single-cell techniques and mathematical methods. The application of time-series gene expression data to determine temporal gene expression patterns (SA1), single-cell analyses to determine intercellular influence networks(SA2),and multivariate statistical approaches (SA3) will generate models that describe the dynamic functional responses of the immune system, and identify sets of measurable predictors of clinical outcomes. This project involves a collaboration among four labs: The Xavier lab (MGH/Broad) and the Kleinstein lab (Yale) with expertise in bioinformatics and modeling approaches to innate and adaptive immunity, and the Love lab (MIT/Broad Institute) and the Lauffenburger lab (MIT/Broad) with expertise in microscale single-cell assays and mathematical algorithms to infer cellular networks. We will combine efforts 1) to integrate data on the diverse immune responses studied in this research program (vaccinations in healthy or aged persons, natural infections by viruses) and 2) to generate new network models based on comprehensive single-cell analyses. This project will leverage emerging approaches from engineering and computer science to improve detailed modeling of biological phenomena and provide feedback to refine experimental hypotheses in other areas of the program. The outcome of this research for health will be a set of comprehensive, integrated models for systemic immune responses that will inform vaccine design and improve the selection of biomarkers for clinical monitoring.

Public Health Relevance

Many studies have measured independent parameters as related to disease or the efficacy of treatment. While these studies have advanced analysis of immune responses to infection and vaccination, we still lack a cohesive approach to describe the coordinated and integrated immune system. This project will develop new methods to define immunological signatures within large sets of clinical data and to translate those signatures back to simple, predictive sets of parameters for routine clinical monitoring of immune responses

Agency
National Institute of Health (NIH)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI089992-05
Application #
8699130
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Yale University
Department
Type
DUNS #
City
New Haven
State
CT
Country
United States
Zip Code
06510
Yao, Yi; Montgomery, Ruth R (2016) Role of Immune Aging in Susceptibility to West Nile Virus. Methods Mol Biol 1435:235-47
Montgomery, Ruth R (2016) High standards for high dimensional investigations. Cytometry A 89:886-888
Das, Rituparna; Loughran, Kerry; Murchison, Charles et al. (2016) Association between high expression macrophage migration inhibitory factor (MIF) alleles and West Nile virus encephalitis. Cytokine 78:51-4
Montgomery, Ruth R; Murray, Kristy O (2015) Risk factors for West Nile virus infection and disease in populations and individuals. Expert Rev Anti Infect Ther 13:317-25
Strauss-Albee, Dara M; Fukuyama, Julia; Liang, Emily C et al. (2015) Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility. Sci Transl Med 7:297ra115
Mohanty, Subhasis; Joshi, Samit R; Ueda, Ikuyo et al. (2015) Prolonged proinflammatory cytokine production in monocytes modulated by interleukin 10 after influenza vaccination in older adults. J Infect Dis 211:1174-84
Qian, Feng; Goel, Gautam; Meng, Hailong et al. (2015) Systems immunology reveals markers of susceptibility to West Nile virus infection. Clin Vaccine Immunol 22:6-16
Qian, Feng; Montgomery, Ruth R (2015) Imaging Immunosenescence. Methods Mol Biol 1343:97-106
Thakar, Juilee; Mohanty, Subhasis; West, A Phillip et al. (2015) Aging-dependent alterations in gene expression and a mitochondrial signature of responsiveness to human influenza vaccination. Aging (Albany NY) 7:38-52
Tsioris, Konstantinos; Gupta, Namita T; Ogunniyi, Adebola O et al. (2015) Neutralizing antibodies against West Nile virus identified directly from human B cells by single-cell analysis and next generation sequencing. Integr Biol (Camb) 7:1587-97

Showing the most recent 10 out of 46 publications