This U19 project brings together a large number of investigators of varied expertise generating different forms of data to characterize immune responses to vaccinated and infected subjects in several sample collections. The resulting multidimensional dataset will be an extremely rich substrate for systematic analyses that not only answer specific questions but also investigate the possibility of coordinated responses to vaccination across multiple platforms. Leveraging existing database infrastructure at the Broad Institute, we will build a database for this U19 project by adding functionality that accommodates the unique features of different immunophenotypic data. In particular, we will implement an automated pipeline for cytometric data preparation, quality control, and analysis based on our FLAME program. This novel method models multidimensional data and extracts parameters such as geometric descriptions of cell population clusters and the orientation of these clusters in multidimensional space. This method illustrates the cutting-edge computational methods that we will deploy in this project. Additional methods will be written and implemented as needed in close collaboration with the Analysis Team, whose members are also physically located at the Broad Institute.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI089992-05
Application #
8868323
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Yale University
Department
Type
DUNS #
City
New Haven
State
CT
Country
United States
Zip Code
Murray, Kristy O; Nolan, Melissa S; Ronca, Shannon E et al. (2018) The Neurocognitive and MRI Outcomes of West Nile Virus Infection: Preliminary Analysis Using an External Control Group. Front Neurol 9:111
Molony, Ryan D; Malawista, Anna; Montgomery, Ruth R (2018) Reduced dynamic range of antiviral innate immune responses in aging. Exp Gerontol 107:130-135
Martin-Gayo, Enrique; Cole, Michael B; Kolb, Kellie E et al. (2018) A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers. Genome Biol 19:10
Wang, Xiaomei; Malawista, Anna; Qian, Feng et al. (2018) Age-related changes in expression and signaling of TAM receptor inflammatory regulators in monocytes. Oncotarget 9:9572-9580
Cahill, Megan E; Conley, Samantha; DeWan, Andrew T et al. (2018) Identification of genetic variants associated with dengue or West Nile virus disease: a systematic review and meta-analysis. BMC Infect Dis 18:282
van Dijk, David; Sharma, Roshan; Nainys, Juozas et al. (2018) Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. Cell 174:716-729.e27
Ordovas-Montanes, Jose; Dwyer, Daniel F; Nyquist, Sarah K et al. (2018) Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560:649-654
Mead, Benjamin E; Ordovas-Montanes, Jose; Braun, Alexandra P et al. (2018) Harnessing single-cell genomics to improve the physiological fidelity of organoid-derived cell types. BMC Biol 16:62
Avey, Stefan; Mohanty, Subhasis; Wilson, Jean et al. (2017) Multiple network-constrained regressions expand insights into influenza vaccination responses. Bioinformatics 33:i208-i216
Cahill, Megan E; Yao, Yi; Nock, David et al. (2017) West Nile Virus Seroprevalence, Connecticut, USA, 2000-2014. Emerg Infect Dis 23:708-710

Showing the most recent 10 out of 64 publications