The University of Michigan Enterics Research Investigational Network Cooperative Research Center (UM ERIN CRC) is composed of an integrated, multidisciplinary team of investigators who have expertise in bacterial pathogenesis, microbial ecology, immunology, human genetics, infectious diseases, bioinformatics, clinical medicine and geriatrics. To leverage the expertise of the assembled team, their current research interests and past research accomplishments, the UM ERIN CRC will focus its efforts on the study of antibiotic-associated colitis due to Clostridium difficile. C. difficile infection (CDI) is a re-emerging infectious disease that is responsible for significant morbidity and mortality. However, despite the significance of CDI, there are major gaps in our knowledge of the pathogenesis of this infection. To address these gaps, the UM ERIN CRC will carry out three projects. In the first project a clinical survey will be conducted to collect clinical specimens (feces, blood and human DNA) and C. difficile strains from asymptomatically infected individuals and patients with initial episodes or recurrent CDI of varying severity. The C. difficile strains will be genetically characterized to understand the role of bacterial diversity/evolution in the disease process. This information will be used to develop a rapid single-nucleotide polymorphism typing scheme to aid in rapid diagnosis and molecular epidemiology. The second project will utilize the clinical specimens and clinical strains to determine the role of the indigenous microbiota in CDI. Specific hypotheses regarding gut microbial ecology and CDI will be tested in a novel murine model that we have activated in our laboratory group. The last portion of this project involves examination of the relationship between the ability of C. difficile to sporulate/germ in ate and the pathogenesis of CDI. The spore biology of the clinical strains from the first project will be characterized and variants tested for the ability to persist and cause disease using the murine model. Targeted mutants of the sporulation pathway will also be constructed and characterized. The third project will leverage the clinical specimens and the murine model of CDI to characterize the role of the host response in CDI pathogenesis. The role of innate and adaptive immune responses in mediating clinical disease and susceptibility will be determined by examining responses and biomarkers in samples from human clinical cases and the murine model. These integrated projects will increase our understanding of C. difficile disease and lead to novel diagnostic and therapeutic modalities for this increasingly important pathogen.

Public Health Relevance

Treatment with antibiotics can lead to antibiotic-associated colitis due to infection with the bacterium Clostridium difficile. The proposed research will study the role of specific types of C. difficile, human genetics and immune responses and the existing gut bacteria in disease related to C. difficile infection. The overall goal is to increase our ability to come up with novel ways to prevent and treat this important human infection.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-BLG-M (M2))
Program Officer
Ranallo, Ryan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Internal Medicine/Medicine
Schools of Medicine
Ann Arbor
United States
Zip Code
Kopliku, Fatos A; Schubert, Alyxandria M; Mogle, Jill et al. (2015) Low prevalence of Clostridium septicum fecal carriage in an adult population. Anaerobe 32:34-6
Leslie, Jhansi L; Young, Vincent B (2015) The rest of the story: the microbiome and gastrointestinal infections. Curr Opin Microbiol 23:121-5
Seekatz, Anna M; Young, Vincent B (2014) Clostridium difficile and the microbiota. J Clin Invest 124:4182-9
Islam, J; Taylor, A L; Rao, K et al. (2014) The role of the humoral immune response to Clostridium difficile toxins A and B in susceptibility to C. difficile infection: a case-control study. Anaerobe 27:82-6
Rao, Krishna; Young, Vincent B; Aronoff, David M (2014) Fecal microbiota therapy: ready for prime time? Infect Control Hosp Epidemiol 35:28-30
Theriot, Casey M; Koenigsknecht, Mark J; Carlson Jr, Paul E et al. (2014) Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun 5:3114
El-Zaatari, Mohamad; Chang, Yu-Ming; Zhang, Min et al. (2014) Tryptophan catabolism restricts IFN-?-expressing neutrophils and Clostridium difficile immunopathology. J Immunol 193:807-16
Huang, A M; Marini, B L; Frame, D et al. (2014) Risk factors for recurrent Clostridium difficile infection in hematopoietic stem cell transplant recipients. Transpl Infect Dis 16:744-50
Schloss, Patrick D; Iverson, Kathryn D; Petrosino, Joseph F et al. (2014) The dynamics of a family's gut microbiota reveal variations on a theme. Microbiome 2:25
Marino, Simeone; Baxter, Nielson T; Huffnagle, Gary B et al. (2014) Mathematical modeling of primary succession of murine intestinal microbiota. Proc Natl Acad Sci U S A 111:439-44

Showing the most recent 10 out of 42 publications