The United States continues to be a target of bioterrorism especially in the form of a radiological attack. This real possibility has prompted the need for countermeasures to protect against the biological effects of radiation poisoning. Historical data from radiation events in Japan and Chernobyl indicate that skin injury in conjunction with radiation exposure greatly increases both morbidity and mortality rates in individuals. The skin is vital in providing a barrier against harmful substances and protecting against pathogenic attack;two parameters that would certainly be compromised following a radiation-induced breach in this barrier. In the previous funding cycle, our group has made strides in deciphering key mechanisms responsible for acute and chronic effects of radiation in the skin, namely radiation-induced dendritic cell (DC) depletion and epidermal management of oxidative stress. This mechanistic data has lead to the discovery of potential agents that mitigate the above-mentioned effects of radiation. This proposal will further clarify the nature of the defects discovered in our initial studies to provide a foundation for multi-organ strategies for mitigating damage. These studies will greatly benefit from interactions with the other projects, particularly the bone marrow studies as effects on other organ system will undoubtedly affect immune functions in the skin. This proposal will explore how radiafion alone or in combination with an additional skin injury will impair particular parameters essential to homeostatic function of the skin.
In Aim 1, we will explore the mechanism and functional consequences of radiation-induced cutaneous DC depletion;a phenomenon we believe will leave the individual exposed to invading cutaneous pathogens. More importantly, we will address the impact of various agents in mitigating this loss.
Aim 2 will test the hypothesis that radiation exposure impairs skin barrier function resulting from ROS-mediated damage and a hyperinflammatory response, which burdens the repair of secondary skin injury. Mitigating agents will be tested for their efficacy in restoring barrier function and reducing injury.
Aim 3 will focus on the effects of radiation on special populations i.e. those of pediatric or adolescent age. In particular, we will examine whether radiation exposure at a young age results in a chronic barrier defect that impairs normal skin function later in life. The utility of mitigators found efficacious in Aims 1 and 2 will be tested in tills model.

Public Health Relevance

The skin is a vital organ for protection against pathogens and is one often compromised by radiological agents. This study will advance our preliminary findings regarding how the barrier and immune functions are affected by radiafion exposure and other injuries and most importantly will test three reagents, IL-12, TH-curcumin and EUK-189 for their efficacy in limiting or reversing the damage caused by ionizing radiation and beta burns.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI091036-04
Application #
8513904
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
4
Fiscal Year
2013
Total Cost
$457,474
Indirect Cost
$161,374
Name
University of Rochester
Department
Type
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Moravan, Michael J; Olschowka, John A; Williams, Jacqueline P et al. (2016) Brain radiation injury leads to a dose- and time-dependent recruitment of peripheral myeloid cells that depends on CCR2 signaling. J Neuroinflammation 13:30
Groves, Angela M; Johnston, Carl J; Misra, Ravi S et al. (2016) Effects of IL-4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation. Int J Radiat Biol :1-12
Begolly, Sage; Shrager, Peter G; Olschowka, John A et al. (2016) Fractionation Spares Mice From Radiation-Induced Reductions in Weight Gain But Does Not Prevent Late Oligodendrocyte Lineage Side Effects. Int J Radiat Oncol Biol Phys 96:449-57
Rabender, Christopher; Mezzaroma, Eleonora; Mauro, Adolfo G et al. (2016) IPW-5371 Proves Effective as a Radiation Countermeasure by Mitigating Radiation-Induced Late Effects. Radiat Res 186:478-488
Williams, Jacqueline P; Calvi, Laura; Chakkalakal, Joe V et al. (2016) Addressing the Symptoms or Fixing the Problem? Developing Countermeasures against Normal Tissue Radiation Injury. Radiat Res 186:1-16
Brenner, David J; Chao, Nelson J; Greenberger, Joel S et al. (2015) Are We Ready for a Radiological Terrorist Attack Yet? Report From the Centers for Medical Countermeasures Against Radiation Network. Int J Radiat Oncol Biol Phys 92:504-5
Monin, L; Griffiths, K L; Slight, S et al. (2015) Immune requirements for protective Th17 recall responses to Mycobacterium tuberculosis challenge. Mucosal Immunol 8:1099-109
Monin, Leticia; Griffiths, Kristin L; Lam, Wing Y et al. (2015) Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis. J Clin Invest 125:4699-713
Groves, Angela M; Johnston, Carl J; Misra, Ravi S et al. (2015) Whole-Lung Irradiation Results in Pulmonary Macrophage Alterations that are Subpopulation and Strain Specific. Radiat Res 184:639-49
Evans, Andrew G; Calvi, Laura M (2015) Notch signaling in the malignant bone marrow microenvironment: implications for a niche-based model of oncogenesis. Ann N Y Acad Sci 1335:63-77

Showing the most recent 10 out of 55 publications