Neurocognitive deficits are clearly associated with radiation therapy, particularly in children where they represent a major detrimental side effect of life-saving procedures. Long-standing changes in brain function have also been described in individuals exposed to radiation in the setting of radiological accidents (e.g Chernobyl). Although not as dramatic or life threatening as the classic syndromes associated with lethal and sub-lethal radiation exposure, radiation-induced changes in cognitive capacity will likely present a significant and life-long burden to individuals surviving a radiological accident or nuclear disaster. Accumulating evidence suggests that brain radiation injury leads to a persistent alteration in the brain's milieu, manifest in animal models over many months as activation of endogenous glial cells, recruitment of peripheral immune cells, and chronic elevation of cytokines, chemokines, and reactive oxygen and nitrogen species. We hypothesize that this neuroinflammatory milieu contributes to neurocognitive deficits, including inhibition of hippocampal neurogenesis and synaptic function. Therefore, a major goal of the proposed studies is to determine whether use of agents that inhibit neuroinflammation and/or production of ROS can mitigate radiation-induced changes in inflammatory cell populations, expression of cytokines, production of ROS, hippocampal neurogenesis, and neurocognitive effects. We will explore this hypothesis in adult mice under two exposure conditions (external and internal radiation) and in newly born animals where we expect the effects to be enhanced. We will also determine whether radiation exposed animals are primed for greater neurocognitive deficits following challenge with lipopolysaccharide, a """"""""second hit"""""""" known to alter learning and memory. Finally, we will explore the possibility that total body irradiation combined with thermal burn exacerbates central nervous system effects. Specific outcomes of this project will include development of 4 mouse models for investigating the relationship between brain radiation injury and cognitive deficits, as well as testing of three drugs, each acting through a different mechanism to reduce the neuroinflammatory state and potentially restore cognitive capacity.

Public Health Relevance

Brain radiation injury and associated deficits in cognitive function represents one of the most insidious potential outcomes following a radiological accident or nuclear event. Based on the idea that radiation leads to a neuroinflammatory state that affects brain function, the main goal of this project is to develop models that more closely address radiation exposure in a disaster setting and test whether drugs that inhibit neuroinflammation can restore normal brain function.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI091036-05
Application #
8705375
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Rochester
Department
Type
DUNS #
City
Rochester
State
NY
Country
United States
Zip Code
14627
Dunlap, Micah D; Howard, Nicole; Das, Shibali et al. (2018) A novel role for C-C motif chemokine receptor 2 during infection with hypervirulent Mycobacterium tuberculosis. Mucosal Immunol 11:1727-1742
Howard, Nicole C; Marin, Nancy D; Ahmed, Mushtaq et al. (2018) Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes. Nat Microbiol 3:1099-1108
Groves, Angela M; Johnston, Carl J; Williams, Jacqueline P et al. (2018) Role of Infiltrating Monocytes in the Development of Radiation-Induced Pulmonary Fibrosis. Radiat Res 189:300-311
Begolly, Sage; Olschowka, John A; Love, Tanzy et al. (2018) Fractionation enhances acute oligodendrocyte progenitor cell radiation sensitivity and leads to long term depletion. Glia 66:846-861
Beach, Tyler A; Johnston, Carl J; Groves, Angela M et al. (2017) Radiation induced pulmonary fibrosis as a model of progressive fibrosis: Contributions of DNA damage, inflammatory response and cellular senescence genes. Exp Lung Res 43:134-149
Domingo-Gonzalez, Racquel; Das, Shibali; Griffiths, Kristin L et al. (2017) Interleukin-17 limits hypoxia-inducible factor 1? and development of hypoxic granulomas during tuberculosis. JCI Insight 2:
Judge, Jennifer L; Lacy, Shannon H; Ku, Wei-Yao et al. (2017) The Lactate Dehydrogenase Inhibitor Gossypol Inhibits Radiation-Induced Pulmonary Fibrosis. Radiat Res 188:35-43
Sweet, Tara B; Hurley, Sean D; Wu, Michael D et al. (2016) Neurogenic Effects of Low-Dose Whole-Body HZE (Fe) Ion and Gamma Irradiation. Radiat Res 186:614-623
Moravan, Michael J; Olschowka, John A; Williams, Jacqueline P et al. (2016) Brain radiation injury leads to a dose- and time-dependent recruitment of peripheral myeloid cells that depends on CCR2 signaling. J Neuroinflammation 13:30
Begolly, Sage; Shrager, Peter G; Olschowka, John A et al. (2016) Fractionation Spares Mice From Radiation-Induced Reductions in Weight Gain But Does Not Prevent Late Oligodendrocyte Lineage Side Effects. Int J Radiat Oncol Biol Phys 96:449-457

Showing the most recent 10 out of 65 publications