The overall aim of this core is to provide sophisticated state of the art support for the instrumental developments needed to reach the goals of the Center. It will accomplish this in two closely related ways: 1) to support the instrumental advances, both hardware and software needed to advance each project 2) to ufilize the instrumental and procedural developments in each project to design, construct, and test the 3 types of prototype instruments that will carry out the measurements including being field-deployable and capable of being operated by non-expert personnel with no prior training. The work plan and accompanying budget has been developed to facilitate the capabilifies of this core carrying out its responsibilities for the overall project: to develop optimized critical components to advance the technology in all three projects and then to develop a prototype that incorporates the developments. The personnel in this core have specific responsibilifies that extend across all three projects and also incorporate concepts, software, and hardware within each project. The personnel in this core will be involved in the day to day operations of the three projects, especially in the development of the specialized instrumentation to facilitate each project. Because the fime commitments among the three projects will vary over time and among individuals in this core, it is most efficient to not to try to indicate a set proportion of their efforts for the three projects. Instead we will have the capability and the flexibility to provide the effort that is need to attain maximal progress in all 3 projects and will be able to advance more quickly projects where the field deployability can be achieved most rapidly. The direct project-supporting acfivities will be roughly 40% each for projects 1 and 3 (these are at Dartmouth) and 20% for Project 2 which is centered at Florida. During the course of the grant period the personnel in this core will be spending an increasing amount of their fime and effort in the design, construction, and testing ofthe prototype instruments to be produced. The personnel ofthe projects will be closely involved in both the design and the testing phases of the prototypes that are produced. This core will also interact closely with the Core at MCW where the latter will use their specialized expertise to provide components and advice that will enable the projects to move forward as effectively and efficienfiy as possible.

Public Health Relevance

This core will work closely with the projects in a synergistic way to advance all 3 projects at the maximum feasible rate, leading to the early development of effective prototype devices for making dosimetry measurements in a large population potenfially exposed to clinically significant levels of ionizing radiation. This will enable the medical response to as effective and efficient as possible after such an event.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dartmouth College
United States
Zip Code
Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene et al. (2016) Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure. Health Phys 110:391-4
Flood, Ann Barry; Ali, Arif N; Boyle, Holly K et al. (2016) Evaluating the Special Needs of The Military for Radiation Biodosimetry for Tactical Warfare Against Deployed Troops: Comparing Military to Civilian Needs for Biodosimetry Methods. Health Phys 111:169-82
Sholom, S; McKeever, S W S (2016) Emergency EPR dosimetry technique using vacuum-stored dry nails. Radiat Meas 88:41-47
Guy, Mallory L; Zhu, Lihuang; Ramanathan, Chandrasekhar (2015) Design and characterization of a W-band system for modulated DNP experiments. J Magn Reson 261:11-8
Khailov, A M; Ivannikov, A I; Skvortsov, V G et al. (2015) Calculation of dose conversion factors for doses in the fingernails to organ doses at external gamma irradiation in air. Radiat Meas 82:1-7
Woflson, Helen; Ahmad, Rizwan; Twig, Ygal et al. (2015) A magnetic resonance probehead for evaluating the level of ionizing radiation absorbed in human teeth. Health Phys 108:326-35
Desmet, Céline M; Djurkin, Andrej; Dos Santos-Goncalvez, Ana Maria et al. (2015) Tooth Retrospective Dosimetry Using Electron Paramagnetic Resonance: Influence of Irradiated Dental Composites. PLoS One 10:e0131913
Rychert, Kevin M; Zhu, Gang; Kmiec, Maciej M et al. (2015) Imaging tooth enamel using zero echo time (ZTE) magnetic resonance imaging. Proc SPIE Int Soc Opt Eng 9417:
Rogan, Peter K; Li, Yanxin; Wickramasinghe, Asanka et al. (2014) Automating dicentric chromosome detection from cytogenetic biodosimetry data. Radiat Prot Dosimetry 159:95-104
Guinan, Eva C; Palmer, Christine D; Mancuso, Christy J et al. (2014) Identification of single nucleotide polymorphisms in hematopoietic cell transplant patients affecting early recognition of, and response to, endotoxin. Innate Immun 20:697-711

Showing the most recent 10 out of 30 publications