This core provides scientific and administrative support that impacts the entire Center. It provides the scientific management and financial management essential for the effective and responsible operation of the Center. This core will support the organizational aspects that enable the research to be carried out in an integrated and synergistic manner, with excellent communication including channels for obtaining and utilizing advice that pertains both to individual projects and the center as a whole. It also provides some key over-arching input and support that directly advance the scientific developments and lead to the construction of the capabilities that are the overall goal of the Center. The latter include: 1) sophisticated biostatistical support and 2) guidance of the development of the instruments so that they combine both fully operational technical capabilities and the ability to operate effectively in the environment in which they are likely to be utilized. The budget has been developed to facilitate the capabilities of this core carrying out its responsibilities for the overall project: to develop optimized critical components to advance the technology in all three projects and then to develop a prototype that incorporates the developments into field deployable instruments for all three projects. The personnel in this core have specific responsibilities that extend across all three projects and also incorporate concepts, software, and hardware from the other cores. They also have specific responsibilities with I each project. As noted within the experimental research plans the personnel in this core will be involved in the day to day operations of the three projects, especially in the development of the specialized instrumentation to facilitate each project. Because the time commitments among the three projects will vary over time and among individuals in this core, it is most efficient to not to try to indicate a set proportion of their efforts for the three projects. Instead we will have the capability and the flexibility to provide the effort that is need to attain maximal progress in all three projects and will be able to advance more quickly projects where the field deployability can be achieved most rapidly. As a rough estimate, the direct project-supporting activities will be roughly 40% each for Projects 1 and 3 (these are at Dartmouth) and 20% for Project 2 which is centered at Florida although there also will be a significant amount of the work plan for Project 2 carried out at Dartmouth under the direct guidance of the PI of project 2. During the course of the grant period the personnel in this core will be spending an increasing amount of their time and effort in the design, construction, and testing of the prototype instruments to be produced. The personnel of the projects will be closely involved in both the design and the testing phases.

Public Health Relevance

This core will support the administrative and scientific structure needed to facilitate the development instruments to be the products of this CMCR provide unique and valuable additions to the response capabilities of the medical response to an incident in which large numbers of individuals have potentially been exposed to significant amounts of ionizing radiation, enabling scarce resources to be employed more effectively and reducing the level of anxiety in the population.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-KS-I)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dartmouth College
United States
Zip Code
Sholom, Sergey; McKeever, Stephen (2017) Stability of X-band EPR signals from fingernails under vacuum storage. Radiat Phys Chem Oxf Engl 1993 141:78-87
Shirley, Ben; Li, Yanxin; Knoll, Joan H M et al. (2017) Expedited Radiation Biodosimetry by Automated Dicentric Chromosome Identification (ADCI) and Dose Estimation. J Vis Exp :
Miyake, Minoru; Nakai, Yasuhiro; Yamaguchi, Ichiro et al. (2016) IN-VIVO RADIATION DOSIMETRY USING PORTABLE L BAND EPR: ON-SITE MEASUREMENT OF VOLUNTEERS IN FUKUSHIMA PREFECTURE, JAPAN. Radiat Prot Dosimetry 172:248-253
Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene et al. (2016) Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure. Health Phys 110:391-4
Sholom, S; McKeever, S W S (2016) Emergency EPR dosimetry technique using vacuum-stored dry nails. Radiat Meas 88:41-47
Kobayashi, Kyo; Dong, Ruhong; Nicolalde, Roberto Javier et al. (2016) Evolution and Optimization of Tooth Models for Testing In Vivo EPR Tooth Dosimetry. Radiat Prot Dosimetry 172:152-160
Flood, Ann Barry; Ali, Arif N; Boyle, Holly K et al. (2016) Evaluating the Special Needs of The Military for Radiation Biodosimetry for Tactical Warfare Against Deployed Troops: Comparing Military to Civilian Needs for Biodosimetry Methods. Health Phys 111:169-82
Rychert, Kevin M; Zhu, Gang; Kmiec, Maciej M et al. (2015) Imaging tooth enamel using zero echo time (ZTE) magnetic resonance imaging. Proc SPIE Int Soc Opt Eng 9417:
Woflson, Helen; Ahmad, Rizwan; Twig, Ygal et al. (2015) A magnetic resonance probehead for evaluating the level of ionizing radiation absorbed in human teeth. Health Phys 108:326-35
Guy, Mallory L; Zhu, Lihuang; Ramanathan, Chandrasekhar (2015) Design and characterization of a W-band system for modulated DNP experiments. J Magn Reson 261:11-8

Showing the most recent 10 out of 35 publications