PROJECT 2: Our long-term goal is to elucidate mechanisms by which respiratory syncytial virus (RSV) contributes to asthma pathogenesis. RSV is the leading cause of infant bronchiolitis and a major cause of asthma attacks. RSV is likely involved in asthma development. Severe RSV bronchiolitis in infancy is associated with childhood asthma. Our data suggest that different RSV strains cause differential acute disease severity, both in infants and in experimentally infected mice. Our central hypothesis is that more virulent RSV strains will be tightly associated with early childhood wheezing and asthma development and cause greater epithelial damage, TH2-type inflammation, and airway mucus expression. Our project represents a synergy between RSV molecular epidemiology and mechanistic mouse models of RSV pathogenesis. It is part of a larger study focusing on mechanisms of bronchiolitis-to-asthma in children. The ReSPIRA (Respiratory Study Protection Infection RSV Asthma) cohort will follow 2000 infants until 3-4 years of age. We expect 20-30% of infants will have RSV lower respiratory tract infection (severe), 35-40% will have mild RSV infection, and 35-40% will have no RSV infection detectable. Clinical characteristics of illness will be defined, including a quantitative bronchiolitis severity score (BSS) and prolonged wheezing. We will genotype the approximately 1000 anticipated RSV isolates from the ReSPIRA cohort. We will construct dendrograms to define genetic relatedness of the RSV strains. In collaboration with Dr. Tina Hartert's group (Vanderbilt), we will analyze RSV genotypes and clinical parameters such as BSS and prolonged wheezing to define the role of RSV strain differences in disease seventy and asthma development. We will measure cytokine/chemokine levels in patient respiratory secretions to define how RSV genotypes impact the host response. We will investigate mechanisms of ReSPIRA RSV strain pathogenesis in a mouse model. We hypothesize that different ReSPIRA RSVs will cause differential lung IL 13 and mucus expression and epithelial damage in mice. We will investigate the role of neutrophils in ReSPIRA RSV infection by neutrophil depletion. We will define the role of RSV fusion protein variability in differential pathogenesis using a RSV reverse genetics strategy.

Public Health Relevance

RSV causes >100,000 infant hospitalizations in the US each year and is the leading cause of bronchiolitis and viral death in infants. Mucus production is a hallmark feature of RSV disease. Identification of differentially virulent, mucogenic, and/or

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-PA-I (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
United States
Zip Code
Turi, Kedir N; Romick-Rosendale, Lindsey; Ryckman, Kelli K et al. (2017) A review of metabolomics approaches and their application in identifying causal pathways of childhood asthma. J Allergy Clin Immunol :
Rajan, Devi; Chinnadurai, Raghavan; Keefe, Evan O et al. (2017) Protective role of Indoleamine 2,3 dioxygenase in Respiratory Syncytial Virus associated immune response in airway epithelial cells. Virology 512:144-150
Cephus, Jacqueline-Yvonne; Stier, Matthew T; Fuseini, Hubaida et al. (2017) Testosterone Attenuates Group 2 Innate Lymphoid Cell-Mediated Airway Inflammation. Cell Rep 21:2487-2499
Stier, Matthew T; Goleniewska, Kasia; Cephus, Jacqueline Y et al. (2017) STAT1 Represses Cytokine-Producing Group 2 and Group 3 Innate Lymphoid Cells during Viral Infection. J Immunol 199:510-519
Johnston, Henry Richard; Hu, Yi-Juan; Gao, Jingjing et al. (2017) Identifying tagging SNPs for African specific genetic variation from the African Diaspora Genome. Sci Rep 7:46398
Rosas-Salazar, Christian; Hartert, Tina V (2017) Prenatal exposures and the development of childhood wheezing illnesses. Curr Opin Allergy Clin Immunol 17:110-115
Chatterjee, Srirupa; Luthra, Priya; Esaulova, Ekaterina et al. (2017) Structural basis for human respiratory syncytial virus NS1-mediated modulation of host responses. Nat Microbiol 2:17101
Boyoglu-Barnum, S; Todd, S O; Meng, J et al. (2017) Mutating the CX3C Motif in the G Protein Should Make a Live Respiratory Syncytial Virus Vaccine Safer and More Effective. J Virol 91:
Zhou, Weisong; Zhang, Jian; Goleniewska, Kasia et al. (2016) Prostaglandin I2 Suppresses Proinflammatory Chemokine Expression, CD4 T Cell Activation, and STAT6-Independent Allergic Lung Inflammation. J Immunol 197:1577-86
Bloodworth, Melissa H; Newcomb, Dawn C; Dulek, Daniel E et al. (2016) STAT6 Signaling Attenuates Interleukin-17-Producing ?? T Cells during Acute Klebsiella pneumoniae Infection. Infect Immun 84:1548-55

Showing the most recent 10 out of 89 publications