PROJECT 2: Our long-term goal is to elucidate mechanisms by which respiratory syncytial virus (RSV) contributes to asthma pathogenesis. RSV is the leading cause of infant bronchiolitis and a major cause of asthma attacks. RSV is likely involved in asthma development. Severe RSV bronchiolitis in infancy is associated with childhood asthma. Our data suggest that different RSV strains cause differential acute disease severity, both in infants and in experimentally infected mice. Our central hypothesis is that more virulent RSV strains will be tightly associated with early childhood wheezing and asthma development and cause greater epithelial damage, TH2-type inflammation, and airway mucus expression. Our project represents a synergy between RSV molecular epidemiology and mechanistic mouse models of RSV pathogenesis. It is part of a larger study focusing on mechanisms of bronchiolitis-to-asthma in children. The ReSPIRA (Respiratory Study Protection Infection RSV Asthma) cohort will follow 2000 infants until 3-4 years of age. We expect 20-30% of infants will have RSV lower respiratory tract infection (severe), 35-40% will have mild RSV infection, and 35-40% will have no RSV infection detectable. Clinical characteristics of illness will be defined, including a quantitative bronchiolitis severity score (BSS) and prolonged wheezing. We will genotype the approximately 1000 anticipated RSV isolates from the ReSPIRA cohort. We will construct dendrograms to define genetic relatedness of the RSV strains. In collaboration with Dr. Tina Hartert's group (Vanderbilt), we will analyze RSV genotypes and clinical parameters such as BSS and prolonged wheezing to define the role of RSV strain differences in disease seventy and asthma development. We will measure cytokine/chemokine levels in patient respiratory secretions to define how RSV genotypes impact the host response. We will investigate mechanisms of ReSPIRA RSV strain pathogenesis in a mouse model. We hypothesize that different ReSPIRA RSVs will cause differential lung IL 13 and mucus expression and epithelial damage in mice. We will investigate the role of neutrophils in ReSPIRA RSV infection by neutrophil depletion. We will define the role of RSV fusion protein variability in differential pathogenesis using a RSV reverse genetics strategy.

Public Health Relevance

RSV causes >100,000 infant hospitalizations in the US each year and is the leading cause of bronchiolitis and viral death in infants. Mucus production is a hallmark feature of RSV disease. Identification of differentially virulent, mucogenic, and/or

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI095227-01
Application #
8196528
Study Section
Special Emphasis Panel (ZAI1-PA-I (M1))
Project Start
2011-08-01
Project End
2016-07-31
Budget Start
2011-08-01
Budget End
2012-07-31
Support Year
1
Fiscal Year
2011
Total Cost
$531,763
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Ke, Zunlong; Dillard, Rebecca S; Chirkova, Tatiana et al. (2018) The Morphology and Assembly of Respiratory Syncytial Virus Revealed by Cryo-Electron Tomography. Viruses 10:
Rosas-Salazar, Christian; Shilts, Meghan H; Tovchigrechko, Andrey et al. (2018) Nasopharyngeal Lactobacillus is associated with a reduced risk of childhood wheezing illnesses following acute respiratory syncytial virus infection in infancy. J Allergy Clin Immunol 142:1447-1456.e9
Bloodworth, Melissa H; Rusznak, Mark; Pfister, Connor C et al. (2018) Glucagon-like peptide 1 receptor signaling attenuates respiratory syncytial virus-induced type 2 responses and immunopathology. J Allergy Clin Immunol 142:683-687.e12
Beigelman, Avraham; Rosas-Salazar, Christian; Hartert, Tina V (2018) Childhood Asthma: Is It All About Bacteria and Not About Viruses? A Pro/Con Debate. J Allergy Clin Immunol Pract 6:719-725
Rajagopala, Seesandra V; Singh, Harinder; Patel, Mira C et al. (2018) Cotton rat lung transcriptome reveals host immune response to Respiratory Syncytial Virus infection. Sci Rep 8:11318
Zhou, Weisong; Zhang, Jian; Toki, Shinji et al. (2018) The PGI2 Analog Cicaprost Inhibits IL-33-Induced Th2 Responses, IL-2 Production, and CD25 Expression in Mouse CD4+ T Cells. J Immunol 201:1936-1945
Stier, Matthew T; Zhang, Jian; Goleniewska, Kasia et al. (2018) IL-33 promotes the egress of group 2 innate lymphoid cells from the bone marrow. J Exp Med 215:263-281
Turi, Kedir N; Romick-Rosendale, Lindsey; Ryckman, Kelli K et al. (2018) A review of metabolomics approaches and their application in identifying causal pathways of childhood asthma. J Allergy Clin Immunol 141:1191-1201
Wurth, Mark A; Hadadianpour, Azadeh; Horvath, Dennis J et al. (2018) Human IgE mAbs define variability in commercial Aspergillus extract allergen composition. JCI Insight 3:
Toki, Shinji; Zhou, Weisong; Goleniewska, Kasia et al. (2018) Endogenous PGI2 signaling through IP inhibits neutrophilic lung inflammation in LPS-induced acute lung injury mice model. Prostaglandins Other Lipid Mediat 136:33-43

Showing the most recent 10 out of 111 publications