Although combination antiretroviral therapy (ART) can suppress HIV replication indefinitely, it fails to completely eradicate replication-competent HIV. The major barrier to eradication appears to be the existence of long-lived latently infected resting memory T-cells, although low-level cryptic replication in tissue sanctuaries may also be a contributing factor. Identifying the sites of HIV persistence and the mechanisms that account for this persistence is a major theme of our Collaboratory. In optimally-treated HIV-infected humans and SIV-infected macaques, the frequency of infected T-cells in the Gl tract and lymphoid tissue is almost ten times that found in peripheral blood. The mechanism for such enrichment of infected cells in these tissues is not known. Our overall hypothesis is that chemokines play a critical role in both establishing and maintaining latency and that latency is largely established in tissue where there is high expression of specific chemokines that bind to the chemokine receptors (CCR7, CXCR3, CCR6 and CCR5) found in resting CD4+ T-cells.
In Aim 1, we will identify whether the latent reservoir is established in resting CD4+ T-cells with specific chemokine receptor expression, focusing on subsets of resting memory CD4+ T-cells that express either CXCR3, CCR6, or CCR5 and that reside in tissues.
In Aim 2, we will use a novel in vitro model of primary T-cell latency to screen for agents that will reverse latency. We will test the hypothesis that primary infection of resting T-cells using chemokines in vitro accurately reflects latently-infected cells ex vivo, and that this model can be used to screen for compounds that reverse latency. We will use this model to assist others in the Collaboratory to test novel interventions.
In Aim 3, we will explore the impact of the CCR5 antagonist, maraviroc, on circulating and gut tissue-derived, latently-infected CD4+ T-cells. This work will complement the clinical trial ongoing in Project 7.

Public Health Relevance

Although antiretroviral drugs reduce the viral load, they are not curative. HIV persists indefiniely during therapy, particulaly in lymphoid tissues. In this Project, we will investigate the role that chemokines and chemokine receptors have on maintaining HIV latency, and explore the role of chemokine receptor antagonists in accelerating the decay of the reservoir.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI096109-01
Application #
8202565
Study Section
Special Emphasis Panel (ZAI1-JBS-A (M1))
Project Start
2011-07-08
Project End
2016-06-30
Budget Start
2011-07-08
Budget End
2012-06-30
Support Year
1
Fiscal Year
2011
Total Cost
$236,335
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Tjiam, M Christian; Morshidi, Mazmah A; Sariputra, Lucy et al. (2017) Association of HIV-1 Gag-Specific IgG Antibodies With Natural Control of HIV-1 Infection in Individuals Not Carrying HLA-B*57: 01 Is Only Observed in Viremic Controllers. J Acquir Immune Defic Syndr 76:e90-e92
Martin, Alyssa R; Pollack, Ross A; Capoferri, Adam et al. (2017) Rapamycin-mediated mTOR inhibition uncouples HIV-1 latency reversal from cytokine-associated toxicity. J Clin Invest 127:651-656
Power, Jennifer; Fileborn, Bianca; Dowsett, Gary W et al. (2017) HIV cure research: print and online media reporting in Australia. J Virus Erad 3:229-235
Winckelmann, Anni; Barton, Kirston; Hiener, Bonnie et al. (2017) Romidepsin-induced HIV-1 viremia during effective ART contains identical viral sequences with few deleterious mutations. AIDS :
Mota, Talia M; Rasmussen, Thomas A; Rhodes, Ajantha et al. (2017) No adverse safety or virological changes 2 years following vorinostat in HIV-infected individuals on antiretroviral therapy. AIDS 31:1137-1141
Rasmussen, Thomas A; Anderson, Jenny L; Wightman, Fiona et al. (2017) Cancer therapies in HIV cure research. Curr Opin HIV AIDS 12:96-104
Kaiser, Philipp; Joshi, Sunil K; Kim, Peggy et al. (2017) Assays for precise quantification of total (including short) and elongated HIV-1 transcripts. J Virol Methods 242:1-8
Symons, Jori; Chopra, Abha; Malatinkova, Eva et al. (2017) HIV integration sites in latently infected cell lines: evidence of ongoing replication. Retrovirology 14:2
Tauriainen, Johanna; Scharf, Lydia; Frederiksen, Juliet et al. (2017) Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep 7:40354
Seang, Sophie; Somasunderam, Anoma; Nigalye, Maitreyee et al. (2017) Circulating LOXL2 Levels Reflect Severity of Intestinal Fibrosis and GALT CD4+ T Lymphocyte Depletion in Treated HIV Infection. Pathog Immun 2:239-252

Showing the most recent 10 out of 158 publications