HIV persistence in the optimally-treated patient is sustained by the maintenance of transcriptionally-silent proviral genomes within cell populations that are long-lived or that turn over slowly, and/or by ongoing low-level viral replication leading to de novo infection of target cells. It is a central theme of this Collaboratory that such persistence/latency of HIV is maintained by tissue-based interactions between CD4[+] T cells and myeloid cells through one or more mechanisms, including: (1) efficient cell-to-cell transfer of HIV;(2) regulatory signals that result in CD4[+] T cell dysfunction and impairment of the antiviral response;(3) myeloid signaling to CD4[+] T cells that results in maintenance of transcriptional silencing;and (4) inflammatory signals which result in CD4[+] T cell activation and increased risk of either de novo infection or reactivation of latently infected cells and replenishment of long-lived infected cells. Additionally, HIV infection may induce factors that promote survival of infected cells and, hence, of a long-lived viral reservoir. To determine which of these mechanisms are operative, we will first systemically interrogate the tissue spaces of the optimally treated host, so that the location and size of the latent and actively replicating reservoir can be determined. Given the availability of therapeutic agents that impact upon these mechanisms, we will then test definitively to what extent they might contribute to virus persistence/latency, alone or in concert. In this Project, this approach is taken in the context of SIV infection of the rhesus macaque (Macaca mulatta), pursuing experiments in the following Specific Aims: (1) to determine whether and how foci of persistently replicating and/or latent virus are sustained in the optimally-treated host by pathologic myeloid-T cell interactions;(2) to determine whether the persistent/latent virus pool can be diminished by inhibition of indoleamine 2,3- dioxygenase (IDO), an immunoregulatory enzyme that mediates the pro-inflammatory effects of myeloid cells on CD4+ T cells;and (3) to determine whether the persistent/latent virus pool can be diminished by inhibition of monocyte colony stimulating factor (MCSF), a cytokine which is upregulated by SIV/HIV and that prevents apoptosis of macrophages.

Public Health Relevance

Interacting closely with the work in Projects 2-5 and 7, this Project will explore the extent to which various interactions between CD4[+] T cells and myeloid cells are associated with persistence/latency of SIV virus after the initiation of ART. We will also develop a quantitative framework by which to assess changes in the total body load of viral genomes, before and after each mechanism is interrupted pharmacologically in vivo.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI096109-03
Application #
8500166
Study Section
Special Emphasis Panel (ZAI1-JBS-A)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
3
Fiscal Year
2013
Total Cost
$882,883
Indirect Cost
$113,885
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Okoye, Afam A; Hansen, Scott G; Vaidya, Mukta et al. (2018) Early antiretroviral therapy limits SIV reservoir establishment to delay or prevent post-treatment viral rebound. Nat Med 24:1430-1440
Winckelmann, Anni; Morcilla, Vincent; Shao, Wei et al. (2018) Genetic characterization of the HIV-1 reservoir after Vacc-4x and romidepsin therapy in HIV-1-infected individuals. AIDS 32:1793-1802
Wykes, Michelle N; Lewin, Sharon R (2018) Immune checkpoint blockade in infectious diseases. Nat Rev Immunol 18:91-104
Lee, Sulggi A; Elliott, Julian H; McMahon, James et al. (2018) Population Pharmacokinetics and Pharmacodynamics of Disulfiram on Inducing Latent HIV-1 Transcription in a Phase IIb Trial. Clin Pharmacol Ther :
Kumar, Nitasha A; van der Sluis, Renee M; Mota, Talia et al. (2018) Myeloid Dendritic Cells Induce HIV Latency in Proliferating CD4+ T Cells. J Immunol 201:1468-1477
Walters, Lucy C; Harlos, Karl; Brackenridge, Simon et al. (2018) Pathogen-derived HLA-E bound epitopes reveal broad primary anchor pocket tolerability and conformationally malleable peptide binding. Nat Commun 9:3137
Adland, Emily; Hill, Matilda; Lavandier, Nora et al. (2018) Differential Immunodominance Hierarchy of CD8+ T-Cell Responses in HLA-B*27:05- and -B*27:02-Mediated Control of HIV-1 Infection. J Virol 92:
Boyer, Zoe; Palmer, Sarah (2018) Targeting Immune Checkpoint Molecules to Eliminate Latent HIV. Front Immunol 9:2339
Wang, Chia-Ching; Thanh, Cassandra; Gibson, Erica A et al. (2018) Transient loss of detectable HIV-1 RNA following brentuximab vedotin anti-CD30 therapy for Hodgkin lymphoma. Blood Adv 2:3479-3482
Reeves, Daniel B; Duke, Elizabeth R; Wagner, Thor A et al. (2018) A majority of HIV persistence during antiretroviral therapy is due to infected cell proliferation. Nat Commun 9:4811

Showing the most recent 10 out of 190 publications