Quiescent memory CD4 T cells harboring integrated, actively repressed HIV proviruses currently form a formidable barrier to viral eradication. This latent reservoir could be attacked by activating proviral gene expression thereby sensitizing the virus to antiretroviral therapy . For success, this strategy must both prevent viral spread and result in the death of all latently infected cells without producing a toxic state of generalized cellular activation. Currently, no effective therapies for HIV latency exist. We hypothesize that a more complete understanding ofthe molecular underpinnings of HIV latency?notably, the full range of the host's regulatory factors that promote and antagonize latency?will facilitate the development of effective therapies.
In Aim 1, we will examine five novel candidate HIV repressors identified by genome wide siRNA screening of HIV-infected HeLa cells. These candidates have biological properties consistent with a role in latency and are expressed in lymphoid tissues. Expression of these candidate genes will be analyzed in biologically relevant cells and their function assessed by lentiviral shRNA knockdown.
In Aim 2, we will screen a CD4 T-cell model of HIV latency for microRNAs (miRs) that promote viral latency by impairing the expression of cellular activators. We will validate mlR action using antagomirs in latently infected primary CD4 T-cells.
In Aim 3, we will use bioinformatics and transcriptional profiling approaches to identify the host gene products that are suppressed by these miRs. Using this dual experimental approach, we will identify cellular factors that naturally promote and antagonize HIV latency. Where appropriate, mechanism-of-action studies will be performed. Identified targets will be prioritized, based on the robustness of their activity and overall

Public Health Relevance

These studies promise to deepen our understanding ofthe cellular factors that both promote and antagonize HIV latency and ultimately to provide new approaches for purging HIV from the latent reservoir. Ultimately, we seek to translate these basic insights into HIV latency into combinations of small molecule inducers that effectively purge the latent reservoir. Success in these studies could radically change the landscape of clinical care for HIV-infected patients throughout the world.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-JBS-A)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Honeycutt, Jenna B; Sheridan, Patricia A; Matsushima, Glenn K et al. (2015) Humanized mouse models for HIV-1 infection of the CNS. J Neurovirol 21:301-9
Manson McManamy, Mary E; Hakre, Shweta; Verdin, Eric M et al. (2014) Therapy for latent HIV-1 infection: the role of histone deacetylase inhibitors. Antivir Chem Chemother 23:145-9
King, Helen L; Keller, Samuel B; Giancola, Michael A et al. (2014) Pre-exposure prophylaxis accessibility research and evaluation (PrEPARE Study). AIDS Behav 18:1722-5
Spivak, Adam M; Andrade, Adriana; Eisele, Evelyn et al. (2014) A pilot study assessing the safety and latency-reversing activity of disulfiram in HIV-1-infected adults on antiretroviral therapy. Clin Infect Dis 58:883-90
Duverger, Alexandra; Wolschendorf, Frank; Anderson, Joshua C et al. (2014) Kinase control of latent HIV-1 infection: PIM-1 kinase as a major contributor to HIV-1 reactivation. J Virol 88:364-76
Denton, Paul W; Long, Julie M; Wietgrefe, Stephen W et al. (2014) Targeted cytotoxic therapy kills persisting HIV infected cells during ART. PLoS Pathog 10:e1003872
Abreu, Celina M; Price, Sarah L; Shirk, Erin N et al. (2014) Dual role of novel ingenol derivatives from Euphorbia tirucalli in HIV replication: inhibition of de novo infection and activation of viral LTR. PLoS One 9:e97257
Archin, Nancie M; Margolis, David M (2014) Emerging strategies to deplete the HIV reservoir. Curr Opin Infect Dis 27:29-35
Liu, Pingyang; Xiang, Yanhui; Fujinaga, Koh et al. (2014) Release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein (snRNP) activates hexamethylene bisacetamide-inducible protein (HEXIM1) transcription. J Biol Chem 289:9918-25
Persaud, Deborah; Patel, Kunjal; Karalius, Brad et al. (2014) Influence of age at virologic control on peripheral blood human immunodeficiency virus reservoir size and serostatus in perinatally infected adolescents. JAMA Pediatr 168:1138-46

Showing the most recent 10 out of 77 publications