CTD kinases are critical for the elongation of HIV transcription and co-transcriptional processing of viral transcripts. They function after chromatin remodeling and before translation of viral proteins. Thus, our project will interface well with those of Greene, Ott and Verdin on epigenetic regulation ofthe integrated provirus. Manipulations that change the HIV epigenome will then be evaluated with respect to their effects on CTD kinases, for which we not only have the reagents but also a greater understanding of their function. It is more than likely that high throughput screens in these other projects will identify compounds that will affect P-TEFb, CycK or CycL complexes, or that will act in concert with agonists that affect primarily these CTD kinases'. In addition, studies by Karn on effects of cellular signaling on P-TEFb and NF-kB will allow us to his latency model to test our ideas on CycK and CycL complexes as well. It is also possible that effects of Nef are not mediated via P-TEFb but rather disregulate subunits of CycK, By differentially affecting HIV splicing and polyadenylation, they might allow more cells to enter proviral latency.

Public Health Relevance

The projects in mouse and macaque models in the HIV Collaboratory will directly contribute to several Important objectives ofthe Collaboratory including identification of the range of cells and tissues harboring latent proviruses, dissection of molecular mechanisms underlying HIV latency, and discovery and evaluation of new compounds and strategies for successfully purging the virus from the latent reservoirs or establishing a drug-free remission

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI096113-03
Application #
8497426
Study Section
Special Emphasis Panel (ZAI1-JBS-A)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
3
Fiscal Year
2013
Total Cost
$391,828
Indirect Cost
$23,256
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Beliakova-Bethell, Nadejda; Hezareh, Marjan; Wong, Joseph K et al. (2017) Relative efficacy of T cell stimuli as inducers of productive HIV-1 replication in latently infected CD4 lymphocytes from patients on suppressive cART. Virology 508:127-133
Martin, Alyssa R; Pollack, Ross A; Capoferri, Adam et al. (2017) Rapamycin-mediated mTOR inhibition uncouples HIV-1 latency reversal from cytokine-associated toxicity. J Clin Invest 127:651-656
Yek, Christina; Massanella, Marta; Peling, Tashi et al. (2017) Evaluation of the Aptima HIV-1 Quant Dx Assay for HIV-1 RNA Quantitation in Different Biological Specimen Types. J Clin Microbiol 55:2544-2553
Lee, Sook-Kyung; Zhou, Shuntai; Baldoni, Pedro L et al. (2017) Quantification of the Latent HIV-1 Reservoir Using Ultra Deep Sequencing and Primer ID in a Viral Outgrowth Assay. J Acquir Immune Defic Syndr 74:221-228
Boehm, Daniela; Ott, Melanie (2017) Flow Cytometric Analysis of HIV-1 Transcriptional Activity in Response to shRNA Knockdown in A2 and A72 J-Lat Cell Lines. Bio Protoc 7:
Chaillon, Antoine; Nakazawa, Masato; Wertheim, Joel O et al. (2017) No Substantial Evidence for Sexual Transmission of Minority HIV Drug Resistance Mutations in Men Who Have Sex with Men. J Virol 91:
Sung, Julia A; Sholtis, Katherine; Kirchherr, Jennifer et al. (2017) Vorinostat Renders the Replication-Competent Latent Reservoir of Human Immunodeficiency Virus (HIV) Vulnerable to Clearance by CD8 T Cells. EBioMedicine 23:52-58
Akrami, Kevan; Coletta, Joelle; Mehta, Sanjay et al. (2017) Gordonia sternal wound infection treated with ceftaroline: case report and literature review. JMM Case Rep 4:e005113
Gianella, Sara; Taylor, Jeff; Brown, Timothy R et al. (2017) Can research at the end of life be a useful tool to advance HIV cure? AIDS 31:1-4
Bosque, Alberto; Nilson, Kyle A; Macedo, Amanda B et al. (2017) Benzotriazoles Reactivate Latent HIV-1 through Inactivation of STAT5 SUMOylation. Cell Rep 18:1324-1334

Showing the most recent 10 out of 209 publications