Proviral latency remains an important barrier to eradication of HIV from infected individuals. Epigenetic processes are critical in the regulation of HIV gene expression. We hypothesize that arginine and lysine methylation plays an important silencing role in proviral latency and that small molecule inhibitors of methyltransferases can contribute therapeutically to the induction/eradication (l/E) of HIV in latently infected T cells. This hypothesis is supported by data in the literature and our own preliminary unpublished studies, in which we identified several methyltransferases (MTs) with suppressive activity against HIV transcription in latently infected T cells. The goal of Project 1.5 is to comprehensively study the role of MTs in persistent HIV infection and in close collaboration with investigators across the Martin Deianey Collaboratory to validate MTs as potential drug targets in the l/E of HIV proviral latency.
Specific Aim 1 : Comprehensively analyze small hairpin RNAs directed against lysine and arginine methyltransferases in J-Lat cells and primary cell culture models of HIV latency. We will perform a highly targeted shRNA screen of 11 known human arginine MTs, 24 known human lysine MTs and 38 new proteins identified based on domain homology with a conserved SET domain characteristic for lysine MTs to identify a set of MTs that enforce HIV latency as potential drug targets for l/E therapy.
Specific Aim 2 : Study the molecular mechanisms how methyltransferases control HIV latency. We will study the transcriptional activities of four suppressive MTs (PRMT1, PRMT6, Set1 and SETDB1) identified by our preliminary work. We will study the in wVo recruitment of these factors to the latent HIV LTR and identify substrates of these enzymes in latently infected T cells (histones. Tat, P-TEFb or NF-KB).
Specific Aim 3 : Test the effect of methyltransferase inhibitors on the reactivation of HIV transcription in latently infected T cells. We will evaluate the effect of known small molecule inhibitors of arginine and lysine MTs on HIV proviral latency in J-Lat cells and primary T cell models of latency. We will characterize the enzymes primarily targeted by these inhibitors and use this information for the development of effective and specific l/E of HIV, Collectively, these studies will provide novel molecular insight into the basic mechanisms governing HIV proviral latency and support the collective goal of this Collaboratory to produce compounds to be tested in the l/E of persistent HIV infection in animals and patients.

Public Health Relevance

Within the Collaboratory of accomplished investigators with longstanding and durable efforts in the molecular studies of persistent HIV infection, we seek to define the role of arginine and lysine methyltransferases in the control of latent HIV infection. These studies are directly relevant to HIV/AIDS and may contribute to the development of novel antiviral drugs that will address public need.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1-JBS-A)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Beliakova-Bethell, Nadejda; Hezareh, Marjan; Wong, Joseph K et al. (2017) Relative efficacy of T cell stimuli as inducers of productive HIV-1 replication in latently infected CD4 lymphocytes from patients on suppressive cART. Virology 508:127-133
Martin, Alyssa R; Pollack, Ross A; Capoferri, Adam et al. (2017) Rapamycin-mediated mTOR inhibition uncouples HIV-1 latency reversal from cytokine-associated toxicity. J Clin Invest 127:651-656
Yek, Christina; Massanella, Marta; Peling, Tashi et al. (2017) Evaluation of the Aptima HIV-1 Quant Dx Assay for HIV-1 RNA Quantitation in Different Biological Specimen Types. J Clin Microbiol 55:2544-2553
Lee, Sook-Kyung; Zhou, Shuntai; Baldoni, Pedro L et al. (2017) Quantification of the Latent HIV-1 Reservoir Using Ultra Deep Sequencing and Primer ID in a Viral Outgrowth Assay. J Acquir Immune Defic Syndr 74:221-228
Boehm, Daniela; Ott, Melanie (2017) Flow Cytometric Analysis of HIV-1 Transcriptional Activity in Response to shRNA Knockdown in A2 and A72 J-Lat Cell Lines. Bio Protoc 7:
Chaillon, Antoine; Nakazawa, Masato; Wertheim, Joel O et al. (2017) No Substantial Evidence for Sexual Transmission of Minority HIV Drug Resistance Mutations in Men Who Have Sex with Men. J Virol 91:
Sung, Julia A; Sholtis, Katherine; Kirchherr, Jennifer et al. (2017) Vorinostat Renders the Replication-Competent Latent Reservoir of Human Immunodeficiency Virus (HIV) Vulnerable to Clearance by CD8 T Cells. EBioMedicine 23:52-58
Akrami, Kevan; Coletta, Joelle; Mehta, Sanjay et al. (2017) Gordonia sternal wound infection treated with ceftaroline: case report and literature review. JMM Case Rep 4:e005113
Gianella, Sara; Taylor, Jeff; Brown, Timothy R et al. (2017) Can research at the end of life be a useful tool to advance HIV cure? AIDS 31:1-4
Bosque, Alberto; Nilson, Kyle A; Macedo, Amanda B et al. (2017) Benzotriazoles Reactivate Latent HIV-1 through Inactivation of STAT5 SUMOylation. Cell Rep 18:1324-1334

Showing the most recent 10 out of 209 publications