Latently infected, quiescent CD4 T cells represent a central obstacle to eradication of HIV-1. Major hurdles are the low frequencies of latently infected cells in peripheral blood and the lack of known phenotypic markers that can distinguish them from uninfected ones. These impediments have prompted the development of in vitro cell models of latency, which. Such models allow manipulation of cellular and viral characteristics to gain a mechanistic understanding of how latency is established and regulated. However, no single experimental system of HIV latency is perceived to completely recapitulate the biology ofthe latent viral reservoir in vivo. This is mainly because (a) the mechanisms for establishment of latency by HIV are multiple;and (b) the types of cells harboring latent reservoirs are also multiple. A wealth of knowledge has been gained regarding how specific stimuli (e.g. activation/differentiation, homeostatic proliferation, cytokines) and viral factors (e.g. integration site, Tat-driven expression) influence the dynamics of latent reservoirs in experimental systems. Project 2.2 will perform

Public Health Relevance

Within the Deianey Collaboratory program, the overall goal of Project 2.2 is the application of in vitro primary cell culture systems to identify new drug-like substances and combinations that will activate latent HIV in biological systems, prior to studies in animals and humans. A second aspect of these studies is to begin to identify the mechanims of action of such drugs, such that future studies can focus on identification of novel cellular targets and pathways, which will broaden of the scope of therapeutic possibilities in the near future.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI096113-03
Application #
8497430
Study Section
Special Emphasis Panel (ZAI1-JBS-A)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
3
Fiscal Year
2013
Total Cost
$300,023
Indirect Cost
$23,255
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
White, Cory H; Beliakova-Bethell, Nadejda; Lada, Steven M et al. (2018) Transcriptional Modulation of Human Endogenous Retroviruses in Primary CD4+ T Cells Following Vorinostat Treatment. Front Immunol 9:603
Chaillon, Antoine; Gianella, Sara; Lada, Steven M et al. (2018) Size, Composition, and Evolution of HIV DNA Populations during Early Antiretroviral Therapy and Intensification with Maraviroc. J Virol 92:
Jiang, Guochun; Nguyen, Don; Archin, Nancie M et al. (2018) HIV latency is reversed by ACSS2-driven histone crotonylation. J Clin Invest 128:1190-1198
Dubé, Karine; Dee, Lynda; Evans, David et al. (2018) Perceptions of Equipoise, Risk-Benefit Ratios, and ""Otherwise Healthy Volunteers"" in the Context of Early-Phase HIV Cure Research in the United States: A Qualitative Inquiry. J Empir Res Hum Res Ethics 13:3-17
Prakash, Katya; Gianella, Sara; Dubé, Karine et al. (2018) Willingness to participate in HIV research at the end of life (EOL). PLoS One 13:e0199670
Papasavvas, Emmanouil; Lada, Steven M; Joseph, Jocelin et al. (2018) Analytical ART interruption does not irreversibly change pre-interruption levels of cellular HIV. AIDS :
Honeycutt, Jenna B; Liao, Baolin; Nixon, Christopher C et al. (2018) T cells establish and maintain CNS viral infection in HIV-infected humanized mice. J Clin Invest 128:2862-2876
Power, Jennifer; Westle, Andrew; Dowsett, Gary W et al. (2018) Perceptions of HIV cure research among people living with HIV in Australia. PLoS One 13:e0202647
Marsden, Matthew D; Wu, Xiaomeng; Navab, Sara M et al. (2018) Characterization of designed, synthetically accessible bryostatin analog HIV latency reversing agents. Virology 520:83-93
Sung, Julia A; Sholtis, Katherine; Kirchherr, Jennifer et al. (2017) Vorinostat Renders the Replication-Competent Latent Reservoir of Human Immunodeficiency Virus (HIV) Vulnerable to Clearance by CD8 T Cells. EBioMedicine 23:52-58

Showing the most recent 10 out of 221 publications