Latent or low-level persistent reservoirs of HIV-1 may be the chief hurdle to eradication of infection. In particular, it is thought that latently infected T cells can harbor integrated virus, which cannot be eliminated by current therapeutics. Therefore if therapy is discontinued for any reason, this reservoir rekindles infection. Additional potential reservoirs, such as macrophages or microglia in the brain could serve as long-lived sources of low-level virus production. It is thus imperative to identify and model means to eliminate these reservoirs. This proposal aims to use an in Vivo model, the recently described

Public Health Relevance

Latent or persistent HIV reservoirs are impervious to standard antiretroviral therapy, thus they stand as the chief obstacle to clearence of virus from the body. This project proposes to utilize a novel in vivo humanized mouse model to test strategies based on induction and subsequent targeted elimination of viral reservoirs. If successful, a new type of treatment strategy may be developed based on results obtained.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI096113-03
Application #
8497439
Study Section
Special Emphasis Panel (ZAI1-JBS-A)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
3
Fiscal Year
2013
Total Cost
$349,965
Indirect Cost
$23,254
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Davis, Zachary B; Cogswell, Andrew; Scott, Hamish et al. (2016) A Conserved HIV-1-Derived Peptide Presented by HLA-E Renders Infected T-cells Highly Susceptible to Attack by NKG2A/CD94-Bearing Natural Killer Cells. PLoS Pathog 12:e1005421
Imaz, Arkaitz; Martinez-Picado, Javier; Niubó, Jordi et al. (2016) HIV-1-RNA Decay and Dolutegravir Concentrations in Semen of Patients Starting a First Antiretroviral Regimen. J Infect Dis 214:1512-1519
Honeycutt, Jenna B; Wahl, Angela; Baker, Caroline et al. (2016) Macrophages sustain HIV replication in vivo independently of T cells. J Clin Invest 126:1353-66
Tokarev, Andrey; Stoneham, Charlotte; Lewinski, Mary K et al. (2016) Pharmacologic Inhibition of Nedd8 Activation Enzyme Exposes CD4-Induced Epitopes within Env on Cells Expressing HIV-1. J Virol 90:2486-502
Victor Garcia, J (2016) Humanized mice for HIV and AIDS research. Curr Opin Virol 19:56-64
Smith, Davey M; Nakazawa, Masato; Freeman, Michael L et al. (2016) Asymptomatic CMV Replication During Early Human Immunodeficiency Virus (HIV) Infection Is Associated With Lower CD4/CD8 Ratio During HIV Treatment. Clin Infect Dis 63:1517-1524
Gianella, Sara; Anderson, Christy M; Var, Susanna R et al. (2016) Replication of Human Herpesviruses Is Associated with Higher HIV DNA Levels during Antiretroviral Therapy Started at Early Phases of HIV Infection. J Virol 90:3944-52
Garcia, J Victor (2016) In vivo platforms for analysis of HIV persistence and eradication. J Clin Invest 126:424-31
Lee, Sook-Kyung; Zhou, Shuntai; Baldoni, Pedro L et al. (2016) Quantification of the Latent HIV-1 Reservoir Using Ultra Deep Sequencing and Primer ID In A Viral Outgrowth Assay. J Acquir Immune Defic Syndr :
Wagner, Gabriel A; Chaillon, Antoine; Liu, Siqi et al. (2016) HIV-associated neurocognitive disorder is associated with HIV-1 dual infection. AIDS 30:2591-2597

Showing the most recent 10 out of 187 publications