The administrative core will be a key component of the success of the Martin Delaney Collaboratory to Eradicate HIV Infection. The power of the Collaboratory will be derived from the strength of its investigators and leading institutions, working in concert across research gaps to bring into clinical testing new molecules and approaches to radication of HIV infection. This Core will supervise the overall activities of this program, providing fiscal accountability, infrastructure and coordination between the laboratory, animal model, and human studies aspects of the Collaboratory. The Core will coordinate intensive communications within the Collaboratory: between the projects, project investigators, NIAID Project Scientist, and the Scientific Advisory Panel, and as needed with other agencies (e.g. FDA). To do this the Core will manage conference calls, web-based tools for meeting, communication, and data-sharing, track the promulgation and publication of study results, produce annual reports, and insure that any resources developed within the Program are appropriately shared outside the Collaboratory. The Core will engage the Scientific Advisory Board, convene Steering Committee, an annual scientific and organizational meeting, and manage intellectual property or other dispute resolution if needed. Further, the core will engage and assist a community advisory board, to garner appropriate support and discussion of the impact of Collaboratory efforts, and address the challenging questions that will arise as human studies begin. The Administrative Core will operationalize the Collaboratory's commitment to pool resources and expertise, transcend the normal constraints of academic research, and work in coordination towards the common goal of eradication of HIV infection.

Public Health Relevance

Despite the success of antiretroviral therapy (ART) in decreasing mortality for HIV-1-infected patients, ART has not cured the disease. A persistent viral reservoir in the T cells of HIV patients receiving potent ART is a significant barrier preventing an HIV cure. Including scientists from eight universities and Merck Research Laboratories, the Martin Delaney Collaboratory will seek to eradicate HIV infection by developing and testing therapies, capable of eventually being tested clinically. that will permanently destroy the viral reservoir.

Agency
National Institute of Health (NIH)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI096113-04
Application #
8707339
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Honeycutt, Jenna B; Sheridan, Patricia A; Matsushima, Glenn K et al. (2015) Humanized mouse models for HIV-1 infection of the CNS. J Neurovirol 21:301-9
King, Helen L; Keller, Samuel B; Giancola, Michael A et al. (2014) Pre-exposure prophylaxis accessibility research and evaluation (PrEPARE Study). AIDS Behav 18:1722-5
Manson McManamy, Mary E; Hakre, Shweta; Verdin, Eric M et al. (2014) Therapy for latent HIV-1 infection: the role of histone deacetylase inhibitors. Antivir Chem Chemother 23:145-9
Duverger, Alexandra; Wolschendorf, Frank; Anderson, Joshua C et al. (2014) Kinase control of latent HIV-1 infection: PIM-1 kinase as a major contributor to HIV-1 reactivation. J Virol 88:364-76
Spivak, Adam M; Andrade, Adriana; Eisele, Evelyn et al. (2014) A pilot study assessing the safety and latency-reversing activity of disulfiram in HIV-1-infected adults on antiretroviral therapy. Clin Infect Dis 58:883-90
Denton, Paul W; Long, Julie M; Wietgrefe, Stephen W et al. (2014) Targeted cytotoxic therapy kills persisting HIV infected cells during ART. PLoS Pathog 10:e1003872
Abreu, Celina M; Price, Sarah L; Shirk, Erin N et al. (2014) Dual role of novel ingenol derivatives from Euphorbia tirucalli in HIV replication: inhibition of de novo infection and activation of viral LTR. PLoS One 9:e97257
Archin, Nancie M; Margolis, David M (2014) Emerging strategies to deplete the HIV reservoir. Curr Opin Infect Dis 27:29-35
Liu, Pingyang; Xiang, Yanhui; Fujinaga, Koh et al. (2014) Release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein (snRNP) activates hexamethylene bisacetamide-inducible protein (HEXIM1) transcription. J Biol Chem 289:9918-25
Persaud, Deborah; Patel, Kunjal; Karalius, Brad et al. (2014) Influence of age at virologic control on peripheral blood human immunodeficiency virus reservoir size and serostatus in perinatally infected adolescents. JAMA Pediatr 168:1138-46

Showing the most recent 10 out of 77 publications