Two of the most critical challenges in developing an effective AIDS vaccine are to understand how to induce durable immunity at mucosal sites and to define the early interactions between HIV and the immune system. In Project 3 we will address both of these issues using the rhesus macaque (RM) model of SIV infection. The precise mechanism by which an AIDS vaccine can confer protective immunity is not known but there is now a general consensus that an effective vaccine should induce both the cellular and humoral arms of the immune system, in particular at the mucosal sites. Recent data from the RV-144 AIDS vaccine trial in Thailand suggest a potential role for antibody in protection from HIV infection. One striking finding from the RV-144 trial was that protection was short-lived and was mostly seen during the first year after vaccination. Thus, a major goal in developing an effective vaccine is to understand how to generate long-lived mucosal immunity. (5D4 T follicular helper (TFH) cells are critical for generating potent and long-lasting antibody responses and in this project we will determine their role in generating protective humoral immunity following vaccination and infection. In our specific aim 1, we will test the hypothesis that long-term humoral immunity is critically dependent on CD4 TFH cells and that the efficient generation of these cells is an essential and obligatory component of an effective HIV vaccine. We will examine the magnitude, quality and persistence of SIV specific CD4 TFH cells in both peripheral and mucosal sites after vaccination and determine its correlation to B cell responses. These studies will examine CD4 TFH responses in RMs immunized with DNA/MVA vaccines adjuvanted with GM-CSF (Project 1) and SIV protein immunizations adjuvanted with TLRs encapsulated in nanoparticles (Project 2). These studies will define which vaccine regimen is most effective in inducing CD4 TFH cells in peripheral and mucosal sites and how the different adjuvants modulate the TFH response and their influence on functional quality and longevity of humoral immunity. In our specific aim 2, we will test the hypothesis that HIV/SIV immunopathogenesis normally precludes the development of a broadly neutralizing antibody response, but this can be counteracted by immunization to generate strong TFH responses before infection. We will determine the susceptibility of TFH cells to SIV infection and study the influence of vaccination on their status following infection, and the relationship between the level of virus replication in CD4 TFH cells and the main features of SIV infection, including the immune response to the virus and the progression to AIDS.

Public Health Relevance

The acquired immunodeficiency caused by HIV-1 is the leading cause of death in Africa and the fourth leading cause of death worldwide. The overall goal of this project is to develop an effective vaccine to control HIV/AIDS.

National Institute of Health (NIH)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
United States
Zip Code
Yang, Rendong; Bai, Yun; Qin, Zhaohui et al. (2014) EgoNet: identification of human disease ego-network modules. BMC Genomics 15:314
Derdeyn, Cynthia A; Moore, Penny L; Morris, Lynn (2014) Development of broadly neutralizing antibodies from autologous neutralizing antibody responses in HIV infection. Curr Opin HIV AIDS 9:210-6
Basu, Debby; Xiao, Peng; Ende, Zachary et al. (2014) Low antibody-dependent cellular cytotoxicity responses in Zambians prior to HIV-1 intrasubtype C superinfection. Virology 462-463:295-8
Magri, Giuliana; Miyajima, Michio; Bascones, Sabrina et al. (2014) Innate lymphoid cells integrate stromal and immunological signals to enhance antibody production by splenic marginal zone B cells. Nat Immunol 15:354-64
Yu, Tianwei; Jones, Dean P (2014) Improving peak detection in high-resolution LC/MS metabolomics data using preexisting knowledge and machine learning approach. Bioinformatics 30:2941-8
Li, Shuzhao; Rouphael, Nadine; Duraisingham, Sai et al. (2014) Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat Immunol 15:195-204
Romberg, Neil; Chamberlain, Nicolas; Saadoun, David et al. (2013) CVID-associated TACI mutations affect autoreactive B cell selection and activation. J Clin Invest 123:4283-93
Li, Shuzhao; Nakaya, Helder I; Kazmin, Dmitri A et al. (2013) Systems biological approaches to measure and understand vaccine immunity in humans. Semin Immunol 25:209-18
Pulendran, Bali; Oh, Jason Z; Nakaya, Helder I et al. (2013) Immunity to viruses: learning from successful human vaccines. Immunol Rev 255:243-55
Cerutti, Andrea; Cols, Montserrat; Puga, Irene (2013) Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol 13:118-32

Showing the most recent 10 out of 20 publications