The Bioinformatics Core provides data management, communications systems, statistical analysis, and support for functional interpretation of high-throughput data as part of the systems biology approach to immunogenetics. Existing platforms will be leveraged to develop and maintain a sophisticated laboratory information management system (LIMS) to facilitate the tracking of information, the processing of raw data through computational pipelines, and communication between all U19 investigators. In addition, the Core will support the prioritization of key immune genes and pathways derived from expression quantitative trait loci (eQTL) and QTL analyses.
The Specific Aims of the Core are as follows:
Aim 1 : Develop and maintain a dedicated data management system with a Systems Immunogenetics Web Portal. The Core will define and implement a program-wide data communication plan that ensures the capture of all grant-generated sample information, data, and resources. Public access to grant-generated data, resources, and mouse line infomnation will also be provided through the Web portal.
Aim 2; Assist in the development of data processing pipelines that ensure data is high-quality, conforms to technical specifications for modeling, and is accessible to all U19 investigators. In collaboration with the Systems Immunogenetics Core, an existing infrastructure will be leveraged to develop and implement data processing pipelines for all high-throughput profiling data, including quality control protocols for microarray, next-generation sequencing, and proteomics.
Aim 3 : Provide analytical support for high-throughput data and the computational predictions generated by the Research Projects and Cores. Statistical, computational, and functional analysis support will be provided for the interpretation of data and results. In addition, the Core will provide analysis of next-generation sequencing data, including in-depth analysis of noncoding RNAs, and processing and interpretation of targeted proteomics studies allowing for a systems level view of key immune genes and pathways across a select set of mouse lines.

Public Health Relevance

The analysis of genetic trait and gene expression data will provide a deeper understanding of the specific immune responses that contribute to viral disease. Communication of this information to the larger research community will help to foster the development of new antiviral therapies and improved vaccines.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI100625-02
Application #
8528830
Study Section
Special Emphasis Panel (ZAI1-QV-I)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
2
Fiscal Year
2013
Total Cost
$296,722
Indirect Cost
$7,670
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Menachery, Vineet D; Schäfer, Alexandra; Burnum-Johnson, Kristin E et al. (2018) MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape. Proc Natl Acad Sci U S A 115:E1012-E1021
Adams Waldorf, Kristina M; Nelson, Branden R; Stencel-Baerenwald, Jennifer E et al. (2018) Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat Med 24:368-374
Hickman, Heather D; Suthar, Mehul S (2018) Editorial overview: Viral immunology: Generating immunity to diverse viral pathogens. Curr Opin Virol 28:viii-x
Chow, Kwan T; Wilkins, Courtney; Narita, Miwako et al. (2018) Differential and Overlapping Immune Programs Regulated by IRF3 and IRF5 in Plasmacytoid Dendritic Cells. J Immunol 201:3036-3050
Maurizio, Paul L; Ferris, Martin T; Keele, Gregory R et al. (2018) Bayesian Diallel Analysis Reveals Mx1-Dependent and Mx1-Independent Effects on Response to Influenza A Virus in Mice. G3 (Bethesda) 8:427-445
Green, Richard; Ireton, Reneé C; Gale Jr, Michael (2018) Interferon-stimulated genes: new platforms and computational approaches. Mamm Genome 29:593-602
Agnihothram, Sudhakar; Menachery, Vineet D; Yount Jr, Boyd L et al. (2018) Development of a Broadly Accessible Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Platform. J Virol 92:
Johnson, Bryan A; Graham, Rachel L; Menachery, Vineet D (2018) Viral metagenomics, protein structure, and reverse genetics: Key strategies for investigating coronaviruses. Virology 517:30-37
Gunn, Bronwyn M; Jones, Jennifer E; Shabman, Reed S et al. (2018) Ross River virus envelope glycans contribute to disease through activation of the host complement system. Virology 515:250-260
Kollmus, Heike; Pilzner, Carolin; Leist, Sarah R et al. (2018) Of mice and men: the host response to influenza virus infection. Mamm Genome 29:446-470

Showing the most recent 10 out of 77 publications