The objectives of the Administrative and Education Core (Core A) are to provide a robust infrastructure and communication network that promotes program faculty interactions and data dissemination to achieve the overall short and long-term goals of the research program. Core A is the prime decision making body for the program. Core A will: a) provide guidance and leadership on administrative and financial matters, b) facilitate communication among the research groups, cores and NIAID, c) promote scientific interactions, data sharing and discussions, d) disseminate information to the scientific community and public using the Systems Immunogenomics Webportal (SIGWP, Core E), e) host educational workshops, seminar series and web based training sessions, and f) ensure regulatory compliance and safety for all projects and cores. Success of the Cooperative Agreement is heavily dependent upon organized communication and the exchange of time-sensitive samples and complex datasets between the Research Projects and Cores. Core A is the pipeline connecting all Projects and Cores, tasked with providing the essential leadership and infrastructure that provides direction, oversight and quality control for the individual and interdependent activities of each project and core, ensuring maximum collaboration, transparent use of program resources and information exchange within our research community. This is accomplished in four broad aims: administrative and fiscal management, communication management, scientific oversight, and education outreach.

Public Health Relevance

Core A is assigned the complex task of overseeing the dissemination of genetic, phenotypic, and genomics data sets between the Projects and Cores;integrating concepts across projects, enabling communication, and education outreach, which will leverage the expertise of each member of the Cooperative Agreement to expedite discovery and achievement of the research goals.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI100625-03
Application #
8706028
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Maurizio, Paul L; Ferris, Martin T; Keele, Gregory R et al. (2018) Bayesian Diallel Analysis Reveals Mx1-Dependent and Mx1-Independent Effects on Response to Influenza A Virus in Mice. G3 (Bethesda) 8:427-445
Green, Richard; Ireton, ReneƩ C; Gale Jr, Michael (2018) Interferon-stimulated genes: new platforms and computational approaches. Mamm Genome 29:593-602
Agnihothram, Sudhakar; Menachery, Vineet D; Yount Jr, Boyd L et al. (2018) Development of a Broadly Accessible Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Platform. J Virol 92:
Johnson, Bryan A; Graham, Rachel L; Menachery, Vineet D (2018) Viral metagenomics, protein structure, and reverse genetics: Key strategies for investigating coronaviruses. Virology 517:30-37
Gunn, Bronwyn M; Jones, Jennifer E; Shabman, Reed S et al. (2018) Ross River virus envelope glycans contribute to disease through activation of the host complement system. Virology 515:250-260
Kollmus, Heike; Pilzner, Carolin; Leist, Sarah R et al. (2018) Of mice and men: the host response to influenza virus infection. Mamm Genome 29:446-470
Gorman, Matthew J; Caine, Elizabeth A; Zaitsev, Konstantin et al. (2018) An Immunocompetent Mouse Model of Zika Virus Infection. Cell Host Microbe 23:672-685.e6
Baxter, Victoria K; Heise, Mark T (2018) Genetic control of alphavirus pathogenesis. Mamm Genome 29:408-424
Chow, Kwan T; Driscoll, Connor; Loo, Yueh-Ming et al. (2018) IRF5 regulates unique subset of genes in dendritic cells during West Nile virus infection. J Leukoc Biol :
Gralinski, Lisa E; Sheahan, Timothy P; Morrison, Thomas E et al. (2018) Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis. MBio 9:

Showing the most recent 10 out of 77 publications