The Bioinformatics Core provides data management, communications systems, statistical analysis, and support for functional interpretation of high-throughput data as part of the systems biology approach to immunogenetics. Existing platforms will be leveraged to develop and maintain a sophisticated laboratory information management system (LIMS) to facilitate the tracking of information, the processing of raw data through computational pipelines, and communication between all U19 investigators. In addition, the Core will support the prioritization of key immune genes and pathways derived from expression quantitative trait loci (eQTL) and QTL analyses.
The Specific Aims of the Core are as follows:
Aim 1 : Develop and maintain a dedicated data management system with a Systems Immunogenetics Web Portal. The Core will define and implement a program-wide data communication plan that ensures the capture of all grant-generated sample information, data, and resources. Public access to grant-generated data, resources, and mouse line infomnation will also be provided through the Web portal.
Aim 2; Assist in the development of data processing pipelines that ensure data is high-quality, conforms to technical specifications for modeling, and is accessible to all U19 investigators. In collaboration with the Systems Immunogenetics Core, an existing infrastructure will be leveraged to develop and implement data processing pipelines for all high-throughput profiling data, including quality control protocols for microarray, next-generation sequencing, and proteomics.
Aim 3 : Provide analytical support for high-throughput data and the computational predictions generated by the Research Projects and Cores. Statistical, computational, and functional analysis support will be provided for the interpretation of data and results. In addition, the Core will provide analysis of next-generation sequencing data, including in-depth analysis of noncoding RNAs, and processing and interpretation of targeted proteomics studies allowing for a systems level view of key immune genes and pathways across a select set of mouse lines.

Public Health Relevance

The analysis of genetic trait and gene expression data will provide a deeper understanding of the specific immune responses that contribute to viral disease. Communication of this information to the larger research community will help to foster the development of new antiviral therapies and improved vaccines.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Swanstrom, J A; Plante, J A; Plante, K S et al. (2016) Dengue Virus Envelope Dimer Epitope Monoclonal Antibodies Isolated from Dengue Patients Are Protective against Zika Virus. MBio 7:
Green, Richard; Wilkins, Courtney; Thomas, Sunil et al. (2016) Transcriptional profiles of WNV neurovirulence in a genetically diverse Collaborative Cross population. Genom Data 10:137-140
Morgan, Andrew P; Didion, John P; Doran, Anthony G et al. (2016) Whole Genome Sequence of Two Wild-Derived Mus musculus domesticus Inbred Strains, LEWES/EiJ and ZALENDE/EiJ, with Different Diploid Numbers. G3 (Bethesda) 6:4211-4216
Green, Richard; Wilkins, Courtney; Thomas, Sunil et al. (2016) Identifying protective host gene expression signatures within the spleen during West Nile virus infection in the collaborative cross model. Genom Data 10:114-117
Zhao, Jincun; Zhao, Jingxian; Mangalam, Ashutosh K et al. (2016) Airway Memory CD4(+) T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses. Immunity 44:1379-91
Chesler, Elissa J; Gatti, Daniel M; Morgan, Andrew P et al. (2016) Diversity Outbred Mice at 21: Maintaining Allelic Variation in the Face of Selection. G3 (Bethesda) 6:3893-3902
Morgan, Andrew P; Holt, J Matthew; McMullan, Rachel C et al. (2016) The Evolutionary Fates of a Large Segmental Duplication in Mouse. Genetics 204:267-85
Zhang, Shuijun; Kostyuchenko, Victor A; Ng, Thiam-Seng et al. (2016) Neutralization mechanism of a highly potent antibody against Zika virus. Nat Commun 7:13679
Graham, Jessica B; Thomas, Sunil; Swarts, Jessica et al. (2015) Genetic diversity in the collaborative cross model recapitulates human West Nile virus disease outcomes. MBio 6:e00493-15
Morgan, Andrew P; Fu, Chen-Ping; Kao, Chia-Yu et al. (2015) The Mouse Universal Genotyping Array: From Substrains to Subspecies. G3 (Bethesda) 6:263-79

Showing the most recent 10 out of 37 publications