Food allergies have become a world-wide public health problem, and allergy to peanuts is particularly problematic. In the U.S., ingestion of offending food allergens is the single most common cause of anaphylaxis seen in hospital emergency departments, and it is estimated that about 30,000 food-induced anaphylactic events are seen in U.S. emergency departments each year;sadly, about 200 of these events prove fatal. Either peanuts or tree nuts cause the majority of these deaths, and a recent survey in the U.S. found that 1.4% of the population is allergic to peanuts or tree nuts. Prior trials of immune desensitization using traditional and rush allergen protocols in patients with peanut allergy (PA) have shown partial rates of response but, unfortunately, have resulted in high rates of adverse reactions, including anaphylaxis. Recently, landmark studies by Dr. A. Wesley Burks and colleagues have shown success in desensitizing peanut-allergic children to peanut via an oral immunotherapy (OIT) protocol. The Stanford Alliance for Food Allergy Research (SAFAR, pronounced """"""""safer"""""""") is a multidisciplinary group whose goals are: 1) to develop and exploit state-of-the-art analytical methods, including advances in human immune monitoring, to improve understanding ofthe immune responses that give rise to food allergies and that underlie promising new approaches to treat this disorder, and 2) to contribute to the development and testing of improved approaches to diagnose, monitor, and treat subjects with food allergies. In this U19 application, we propose to conduct a large placebo-controlled, randomized, phase 2 clinical trial of OIT in children and adults with PA and to measure a broad range of cellular, serologic, and clinical findings in longitudinal samples from PA patients undergoing the trial, as well as from appropriate control subjects (namely, groups of placebo-treated PA subjects, healthy controls, and atopic controls without PA). These data will be used to determine how key immune system parameters are altered during OIT, and which are most predictive of the nature and durability of patient responses to this therapy. In addition, we seek to define immune monitoring parameters, including findings derived from analyses of basophil phenotype and function that can be rapidly performed In a clinical laboratory using very small amounts of blood, that could be used to predict the clinical reactivity to peanut in PA subjects, to improve the safety and efficacy of OIT protocols, and/or to tailor the OIT protocol to each individual subject. We hope that such work will help to achieve the goal of devising a safe and effective curative treatment of this severe disorder.

Public Health Relevance

Peanut allergy (PA) is an increasingly common disorder which can cause serious illness and death in children and adults. We will use Innovative approaches for DNA sequencing, immune monitoring, and data analysis to investigate factors responsible for PA and to improve our ability to manipulate the immune system to cure subjects of PA. We will also try to develop rapid blood tests that can be used to tailor treatment for each individual patient with PA in order to improve the safety and efficacy of such treatment.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
3U19AI104209-01S1
Application #
8699865
Study Section
Special Emphasis Panel (ZAI1-PA-I (J1))
Program Officer
Dong, Gang
Project Start
2013-07-01
Project End
2018-01-31
Budget Start
2013-07-01
Budget End
2014-01-31
Support Year
1
Fiscal Year
2013
Total Cost
$54,234
Indirect Cost
$19,690
Name
Stanford University
Department
Pathology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Hartmann, Felix J; Simonds, Erin F; Bendall, Sean C (2018) A Universal Live Cell Barcoding-Platform for Multiplexed Human Single Cell Analysis. Sci Rep 8:10770
Klein, Ofir; Roded, Amit; Hirschberg, Koret et al. (2018) Imaging FITC-dextran as a Reporter for Regulated Exocytosis. J Vis Exp :
Zhang, Wenming; Lin, Chunrong; Sampath, Vanitha et al. (2018) Impact of allergen immunotherapy in allergic asthma. Immunotherapy 10:579-593
Sampath, Vanitha; Sindher, Sayantani B; Zhang, Wenming et al. (2018) New treatment directions in food allergy. Ann Allergy Asthma Immunol 120:254-262
Sindher, Sayantani B; Long, Andrew; Acharya, Swati et al. (2018) The Use of Biomarkers to Predict Aero-Allergen and Food Immunotherapy Responses. Clin Rev Allergy Immunol 55:190-204
Mukai, Kaori; Tsai, Mindy; Saito, Hirohisa et al. (2018) Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev 282:121-150
Keren, Leeat; Bosse, Marc; Marquez, Diana et al. (2018) A Structured Tumor-Immune Microenvironment in Triple Negative Breast Cancer Revealed by Multiplexed Ion Beam Imaging. Cell 174:1373-1387.e19
Chinthrajah, R Sharon; Purington, Natasha; Andorf, Sandra et al. (2018) Development of a tool predicting severity of allergic reaction during peanut challenge. Ann Allergy Asthma Immunol 121:69-76.e2
Andorf, Sandra; Purington, Natasha; Block, Whitney M et al. (2018) Anti-IgE treatment with oral immunotherapy in multifood allergic participants: a double-blind, randomised, controlled trial. Lancet Gastroenterol Hepatol 3:85-94
Tsai, Cheng-Ting; Mukai, Kaori; Robinson, Peter V et al. (2018) Isotype-specific agglutination-PCR (ISAP): A sensitive and multiplex method for measuring allergen-specific IgE. J Allergy Clin Immunol 141:1901-1904.e15

Showing the most recent 10 out of 53 publications