The goal of the Administration Core is to establish tightly interacting Projects that interface with Technology, Modeling and Data Dissemination and Resource Distribution Cores to achieve the scientific and administrative goals of the Omics forTB Pathogenesis (0TB) consortium. The Core will organize and manage projects, their integration and progress, as well as communication among the groups. The Core is also responsible for implementation of a training program, Systems Biology of Pathogens and Their Hosts Short-Course, to promote the use of the systems biology approach in the study of infectious disease. Starting in the second year, the Administrative Core will also establish a Pilot Research Program and a Training Program to facilitate the development of innovative concepts and new researchers to study infectious diseases with systems biology. The Administrative Core will Continuously monitor the scientific progress of each component of the Program and drive integration across the Projects and Cores. Evaluate the scientific progress of the Program and discuss alternative approaches to advance the science accordingly. Facilitate internal communications among the individual scientists at each institution. Apprise appropriate officials at NIH on progress in the form of teleconferences, meetings, and other communications as mandated by the contract rules. Provide fiscal oversight to ensure all financial resources are used appropriately. Ensure all guidelines with respect to intellectual property issues are followed. Facilitate communication with the larger research community and the public.

Public Health Relevance

The success of a large systems biology program depends on excellent overall management, coordination, and supervision. The Administrative Core will ensure that all requirements of the Program are met and facilitate all aspects of communication, integration, and collaboration in the consortium.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI106761-01
Application #
8577275
Study Section
Special Emphasis Panel (ZAI1-EC-M (M1))
Project Start
2013-06-21
Project End
2018-05-31
Budget Start
2013-06-21
Budget End
2014-05-31
Support Year
1
Fiscal Year
2013
Total Cost
$186,497
Indirect Cost
$70,887
Name
Seattle Biomedical Research Institute
Department
Type
DUNS #
070967955
City
Seattle
State
WA
Country
United States
Zip Code
98109
Peterson, Eliza J R; Ma, Shuyi; Sherman, David R et al. (2016) Network analysis identifies Rv0324 and Rv0880 as regulators of bedaquiline tolerance in Mycobacterium tuberculosis. Nat Microbiol 1:16078
Rothchild, Alissa C; Sissons, James R; Shafiani, Shahin et al. (2016) MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 113:E6172-E6181
Turkarslan, Serdar; Peterson, Eliza J R; Rustad, Tige R et al. (2015) A comprehensive map of genome-wide gene regulation in Mycobacterium tuberculosis. Sci Data 2:150010
Moguche, Albanus O; Shafiani, Shahin; Clemons, Corey et al. (2015) ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med 212:715-28
Ma, Shuyi; Minch, Kyle J; Rustad, Tige R et al. (2015) Integrated Modeling of Gene Regulatory and Metabolic Networks in Mycobacterium tuberculosis. PLoS Comput Biol 11:e1004543
Andersen, Peter; Urdahl, Kevin B (2015) TB vaccines; promoting rapid and durable protection in the lung. Curr Opin Immunol 35:55-62
Minch, Kyle J; Rustad, Tige R; Peterson, Eliza J R et al. (2015) The DNA-binding network of Mycobacterium tuberculosis. Nat Commun 6:5829
Di Paolo, Nelson C; Shafiani, Shahin; Day, Tracey et al. (2015) Interdependence between Interleukin-1 and Tumor Necrosis Factor Regulates TNF-Dependent Control of Mycobacterium tuberculosis Infection. Immunity 43:1125-36
Zak, Daniel E; Aderem, Alan (2015) Systems integration of innate and adaptive immunity. Vaccine 33:5241-8
Urdahl, Kevin B (2014) Understanding and overcoming the barriers to T cell-mediated immunity against tuberculosis. Semin Immunol 26:578-87

Showing the most recent 10 out of 13 publications