Members of the Flavivirus genus are the most important arthropod-borne viruses causing disease in humans, many of which are characterized as NIH Category A, B, and C organisms. This genus includes viruses [West Nile virus (WNV), Japanese encephalitis virus (JEV) and Dengue virus (DENV)] that are endemic and continue to spread in many areas of the world. Flaviviruses account for -100 millions infections per year, with billions at risk and no specific therapy available. Although much work has focused on understanding the mechanisms of flavivirus replication in cultured cells, and on defining virulence in vivo, less remains known about host responses to strains of different virulence, and the genes and cell types that modulate infection in vivo. Here, we propose to identify and define the mechanism of action of novel host genes that modulate WNV infection. A systems biology approach to studying complex host-pathogen interactions associated with infection by virulent and attenuated WNV strains will provide new insight into host response mechanisms. With the support of several Cores (computational;proteomics, metabolomics, and lipidomics;data management and resources dissemination), we will acquire a global picture of the host response to infection by WNV strains of distinct pathogenic potential. Such an analysis has never been performed for any flavivirus. This approach to studying WNV pathogenesis will interact directly with work in Project 1 on influenza A and Ebola viruses to identify novel common genes, networks, and pathways that restrict infection with the viruses studied here. Target genes identified by systems biology will be validated in cells using ectopic expression and gene silencing, and these phenotypes will help prioritizing the generation of new KO mice for evaluation of the function of target genes in vivo in the context of WNV infection. Overall, our studies will provide new insight into the cellular processes that restrict infection by WNV and likely other viruses, and thus may promote novel strategies for development of therapeutic agents that contain virus spread and disease. Moreover, it may have implications for understanding the genetic variation in humans, which could explain susceptibility to particular viral infections.

Public Health Relevance

The continuous outbreaks of flavivirus disease highlight a need for an expanded understanding of mechanisms of immune control. Insight into the processes that restrict flavivirus infection is essential for developing novel strategies to contain disease. These experiments will use a systems biology and network analysis-guided approach to define the novel genes that affect infection of WNV in cells and animals.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI106772-02
Application #
8667403
Study Section
Special Emphasis Panel (ZAI1-EC-M)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
2
Fiscal Year
2014
Total Cost
$395,828
Indirect Cost
Name
University of Wisconsin Madison
Department
Type
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Kyle, Jennifer E; Aly, Noor; Zheng, Xueyun et al. (2018) Evaluating lipid mediator structural complexity using ion mobility spectrometry combined with mass spectrometry. Bioanalysis 10:279-289
Gralinski, Lisa E; Sheahan, Timothy P; Morrison, Thomas E et al. (2018) Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis. MBio 9:
Menachery, Vineet D; Gralinski, Lisa E; Mitchell, Hugh D et al. (2018) Combination Attenuation Offers Strategy for Live Attenuated Coronavirus Vaccines. J Virol 92:
Menachery, Vineet D; Schäfer, Alexandra; Burnum-Johnson, Kristin E et al. (2018) MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape. Proc Natl Acad Sci U S A 115:E1012-E1021
Agnihothram, Sudhakar; Menachery, Vineet D; Yount Jr, Boyd L et al. (2018) Development of a Broadly Accessible Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Platform. J Virol 92:
Thackray, Larissa B; Handley, Scott A; Gorman, Matthew J et al. (2018) Oral Antibiotic Treatment of Mice Exacerbates the Disease Severity of Multiple Flavivirus Infections. Cell Rep 22:3440-3453.e6
Couvillion, Sneha P; Zhu, Ying; Nagy, Gabe et al. (2018) New mass spectrometry technologies contributing towards comprehensive and high throughput omics analyses of single cells. Analyst :
White, James P; Xiong, Shanshan; Malvin, Nicole P et al. (2018) Intestinal Dysmotility Syndromes following Systemic Infection by Flaviviruses. Cell 175:1198-1212.e12
Eisfeld, Amie J; Halfmann, Peter J; Wendler, Jason P et al. (2017) Multi-platform 'Omics Analysis of Human Ebola Virus Disease Pathogenesis. Cell Host Microbe 22:817-829.e8
Zheng, Xueyun; Renslow, Ryan S; Makola, Mpho M et al. (2017) Structural Elucidation of cis/trans Dicaffeoylquinic Acid Photoisomerization Using Ion Mobility Spectrometry-Mass Spectrometry. J Phys Chem Lett 8:1381-1388

Showing the most recent 10 out of 46 publications