Project 1 will identify and assign functions to conserved genes of unknown function in Acinetobacter baumannii, an emerging pathogen that causes hospital-acquired, antibiotic resistant infections. The project will focus on protein-coding genes that contribute to any of seven clinically relevant resistance traits. We hypothesize that such genes control the expression and activities of efflux pumps, membrane permeability determinants, inactivating enzymes, and stress responses. Genes required for resistance to four antibiotics, two biocides and desiccation will first be identified by genome-scale mutant screening using Tn-seq technology. A subset of the resistance genes of unknown function will then be characterized using a battery of genetic, genomic and proteomic approaches. The results will be interpreted in the context of current understanding of each trait in order to formulate potential molecular functions for the genes examined. Hypothesized functions will then be tested using approaches tailored to individual genes.

Public Health Relevance

Acinetobacter baumannii has emerged in recent decades as an important agent of hospital-acquired infections throughout the worid. The pathogen's emergence can be understood in large part by its high resistance to antibiotics, biocides and desiccation. The proposed studies will identify the gene functions responsible for several such resistance traits. The work should identify targets for drugs to enhance the efficacy of established antibiotics in treating Ab infections and for agents that decrease environmental persistence of the bacterium.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI107775-02
Application #
8688146
Study Section
Special Emphasis Panel (ZAI1-FDS-M)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
2
Fiscal Year
2014
Total Cost
$398,892
Indirect Cost
$140,710
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Schweppe, Devin K; Chavez, Juan D; Bruce, James E (2016) XLmap: an R package to visualize and score protein structure models based on sites of protein cross-linking. Bioinformatics 32:306-8
Chavez, Juan D; Schweppe, Devin K; Eng, Jimmy K et al. (2016) In Vivo Conformational Dynamics of Hsp90 and Its Interactors. Cell Chem Biol 23:716-26
Baric, Ralph S; Crosson, Sean; Damania, Blossom et al. (2016) Next-Generation High-Throughput Functional Annotation of Microbial Genomes. MBio 7:
Schweppe, Devin K; Zheng, Chunxiang; Chavez, Juan D et al. (2016) XLinkDB 2.0: integrated, large-scale structural analysis of protein crosslinking data. Bioinformatics 32:2716-8
DeBlasio, Stacy L; Chavez, Juan D; Alexander, Mariko M et al. (2016) Visualization of Host-Polerovirus Interaction Topologies Using Protein Interaction Reporter Technology. J Virol 90:1973-87
Wu, Xia; Chavez, Juan D; Schweppe, Devin K et al. (2016) In vivo protein interaction network analysis reveals porin-localized antibiotic inactivation in Acinetobacter baumannii strain AB5075. Nat Commun 7:13414
Schweppe, Devin K; Chavez, Juan D; Navare, Arti T et al. (2016) Spectral Library Searching To Identify Cross-Linked Peptides. J Proteome Res 15:1725-31
Miller, Samuel I (2016) Antibiotic Resistance and Regulation of the Gram-Negative Bacterial Outer Membrane Barrier by Host Innate Immune Molecules. MBio 7:
Gallagher, Larry A; Ramage, Elizabeth; Weiss, Eli J et al. (2015) Resources for Genetic and Genomic Analysis of Emerging Pathogen Acinetobacter baumannii. J Bacteriol 197:2027-35
Gebhardt, Michael J; Gallagher, Larry A; Jacobson, Rachael K et al. (2015) Joint Transcriptional Control of Virulence and Resistance to Antibiotic and Environmental Stress in Acinetobacter baumannii. MBio 6:e01660-15

Showing the most recent 10 out of 13 publications