Human Herpesvirus 8 (HHV8), also known as Kaposi sarcoma-associated herpesvirus (KSHV), is a member of the gammaherpesvirus family and is on the NIAID list of Emerging/Re-Emerging pathogens. HHV8/KSHV is associated with three different cancers in the human population including Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's disease. The HHV8 genome encodes many known open-reading frames (ORFs), microRNAs and non-coding RNAs. While many of these genes have been previously characterized, there still remain a large number of uncharacterized ORFs, microRNAs and noncoding RNAs. Moreover, systems biology approaches have shown that there is an abundance of previously unknown genes that are transcribed and translated but whose function is currently unknown. These uncharacterized genes include hypothetical genes, unknown ORFs, and non-coding RNAs. In Project 3 of this grant application we hypothesize that several of these uncharacterized genes are involved in inhibition of innate immune and cell death pathways and propose to characterize these viral genes for their ability to inhibit interferon and TLR signaling, inflammation, p53-mediated arrest, and apoptosis. We hypothesize that the inhibition of innate immunity and cell death aids viral pathogenesis by allowing the virus to hide from the host immune system during latency and to ensure robust viral replication during the lytic phase of its lifecycle. The characterization of these viral genes will be done jointly with Projects 1 and 2 of this grant application, in which a highly interactive group of experts in RNA and DNA virus pathogenesis and immunity create a robust screening platform that rapidly identifies and characterizes the function of these novel genes in replication and pathogenesis. This platform can be applied to other pathogenic viruses, will rapidly identify novel targets for therapeutic intervention, improve strategies for vaccine design, improve global responses to newly identified, epidemic disease outbreaks in human populations. Thus, using these approaches we hope to understand the impact of these uncharacterized genes on the host response and characterize the role of these viral genes in the HHV8 viral lifecycle.

Public Health Relevance

HHV8/KSHV is associated with 3 cancers in the human population. In Project 3 of this grant application we hypothesize that several HHV8 uncharacterized genes are involved in inhibition of innate immune and cell death pathways. We propose to decipher the impact of these uncharacterized genes on the host response and characterize the role of these genes in the HHV8 viral lifecycle.

National Institute of Health (NIH)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Hosseinipour, Mina C; Sweet, Kristen M; Xiong, Jie et al. (2014) Viral profiling identifies multiple subtypes of Kaposi's sarcoma. MBio 5:e01633-14
Cockrell, Adam S; Peck, Kayla M; Yount, Boyd L et al. (2014) Mouse dipeptidyl peptidase 4 is not a functional receptor for Middle East respiratory syndrome coronavirus infection. J Virol 88:5195-9
Zhang, Lu; Mo, Jinyao; Swanson, Karen V et al. (2014) NLRC3, a member of the NLR family of proteins, is a negative regulator of innate immune signaling induced by the DNA sensor STING. Immunity 40:329-41
Menachery, Vineet D; Yount Jr, Boyd L; Josset, Laurence et al. (2014) Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2'-o-methyltransferase activity. J Virol 88:4251-64
West, John A; Wicks, Megan; Gregory, Sean M et al. (2014) An important role for mitochondrial antiviral signaling protein in the Kaposi's sarcoma-associated herpesvirus life cycle. J Virol 88:5778-87
Agnihothram, Sudhakar; Gopal, Robin; Yount Jr, Boyd L et al. (2014) Evaluation of serologic and antigenic relationships between middle eastern respiratory syndrome coronavirus and other coronaviruses to develop vaccine platforms for the rapid response to emerging coronaviruses. J Infect Dis 209:995-1006
Deng, Xufang; Agnihothram, Sudhakar; Mielech, Anna M et al. (2014) A chimeric virus-mouse model system for evaluating the function and inhibition of papain-like proteases of emerging coronaviruses. J Virol 88:11825-33
Yang, Dongmei; Chen, Wuguo; Xiong, Jie et al. (2014) Interleukin 1 receptor-associated kinase 1 (IRAK1) mutation is a common, essential driver for Kaposi sarcoma herpesvirus lymphoma. Proc Natl Acad Sci U S A 111:E4762-8
Agnihothram, Sudhakar; Yount Jr, Boyd L; Donaldson, Eric F et al. (2014) A mouse model for Betacoronavirus subgroup 2c using a bat coronavirus strain HKU5 variant. MBio 5:e00047-14
Giffin, Louise; Yan, Feng; Ben Major, M et al. (2014) Modulation of Kaposi's sarcoma-associated herpesvirus interleukin-6 function by hypoxia-upregulated protein 1. J Virol 88:9429-41

Showing the most recent 10 out of 12 publications