Data Management and Resource Dissemination Core: this core fullfills requirements of the RFA. First, the core provides for, organizes and performs sample tracking, data integration and management of data. This functionality will be provided by a central server and web interface. The core will develop, distribute and enforce SOPs for the project. Because we expect information to come from a variety of experimental technologies the core will be essential for the efficient and successful perfonnance of the program. Second, the core will integrate the data from the different biochemical assays and establish a database, which links them to specific orfs, miRNAs, and IncRNAs. Third, the will provide resources for computationally intensive processes, and if necessary develop job scheduling and interfaces to the UNC """"""""Kure"""""""" high perfonnance computing cluster. Forth, this core will provide statistical support and central QC/QA for all biochemical assays performed in this project. The core operates under good clinical laboratory practices (GLP). Lastly, the core will be responsible for timely dissemination of data and reagents to public repositories and the research community at large. We are fortunate in that UNC's department of Microbiology and Immunonology already established a dedictated facility to support genomic, screening and translational studies in Virology. This facility, (www.med.unc.edu/vironomlcs) will provide the physical infrastrcuture and expertise, which will be augment by new servers dedicated to this project.

Public Health Relevance

A common analysis of the data will provide a deeper understanding of the specific pathways that are affected by the uncharacterized orfs, miRNAs and novel IncRNAs. Communication of this information within the group and to the larger research community will help to foster the development of new antiviral therapies and improved vaccines.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI107810-02
Application #
8687589
Study Section
Special Emphasis Panel (ZAI1)
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
City
Chapel Hill
State
NC
Country
United States
Zip Code
27515
Graham, Rachel L; Deming, Damon J; Deming, Meagan E et al. (2018) Evaluation of a recombination-resistant coronavirus as a broadly applicable, rapidly implementable vaccine platform. Commun Biol 1:179
Oishi, Kohei; Yamayoshi, Seiya; Kozuka-Hata, Hiroko et al. (2018) N-Terminal Acetylation by NatB Is Required for the Shutoff Activity of Influenza A Virus PA-X. Cell Rep 24:851-860
Oishi, Kohei; Yamayoshi, Seiya; Kawaoka, Yoshihiro (2018) Identification of novel amino acid residues of influenza virus PA-X that are important for PA-X shutoff activity by using yeast. Virology 516:71-75
Johnson, Bryan A; Graham, Rachel L; Menachery, Vineet D (2018) Viral metagenomics, protein structure, and reverse genetics: Key strategies for investigating coronaviruses. Virology 517:30-37
Halfmann, Peter; Hill-Batorski, Lindsay; Kawaoka, Yoshihiro (2018) The Induction of IL-1? Secretion Through the NLRP3 Inflammasome During Ebola Virus Infection. J Infect Dis 218:S504-S507
Corcoran, Kathleen; Sherrod, Carly J; Perkowski, Ellen F et al. (2017) Genome Sequences of Diverse Human Cytomegalovirus Strains with Utility in Drug Screening and Vaccine Evaluation. Genome Announc 5:
Di, Han; Madden Jr, Joseph C; Morantz, Esther K et al. (2017) Expanded subgenomic mRNA transcriptome and coding capacity of a nidovirus. Proc Natl Acad Sci U S A 114:E8895-E8904
Widman, Douglas G; Young, Ellen; Yount, Boyd L et al. (2017) A Reverse Genetics Platform That Spans the Zika Virus Family Tree. MBio 8:
Gallichotte, Emily N; Dinnon 3rd, Kenneth H; Lim, Xin-Ni et al. (2017) CD-loop Extension in Zika Virus Envelope Protein Key for Stability and Pathogenesis. J Infect Dis 216:1196-1204
Menachery, Vineet D; Graham, Rachel L; Baric, Ralph S (2017) Jumping species-a mechanism for coronavirus persistence and survival. Curr Opin Virol 23:1-7

Showing the most recent 10 out of 44 publications