The Center will apply state-of-the-art genomics and metabolomics approaches to guide the discovery of high value leads produced by under-explored sources of biological diversity. We will focus on compounds that have evolved to be functional through mediation of symbiotic communication between microbes and hosts. The In vitro Core (Core B) scientists will work collaboratively with Professor Bugni's laboratory to produce and purify natural products provided by all three projects in the Center. Core B scientists will assess the anti-microbial activities of extracts, fractions and compounds against drug resistant target pathogens by leveraging the high throughput assay infrastructure and expertise currently available in the UW Small Molecule Screening and Synthesis Facility (SMSSF) and Professor Bugni's laboratory. Doseresponse properties in the antimicrobial assays will be evaluated to prioritize the selection ofthe most potent compounds with broad, cidal activity that causes the death of microbial cells in culture. Compounds with antimicrobial activity then will be assessed for cytotoxicity on primary human cells in order to eliminate toxic compounds early in the projects. Core B scientists also will be responsible for scale-up production of pure compounds (selected by the Center PI and Project leaders) using optimized fermentation approaches developed in Professor Bugni's laboratory and production-scale purification infrastructure. Compounds will be evaluated for stability, solubility and formulation through coordination with the UW School of Pharmacy Pharmaceutical Experiment Station. Sufficient quantities ofthe pure compounds will be provided to Core C for testing the efficacy and safety of the compounds in mice and to Core D, the Mechanism of Action Core. Core B will provide medicinal chemistry expertise to evaluate potential synthetic strategies for simplified analogs and/or for semisynthetic derivatization to improve the pharmacokinetics of scaffolds or determine structure-activity-relationships.

Public Health Relevance

There are no effective therapies for the emerging resistant pathogens that are becoming an increasing threat to the public health. The goals of the Center are to provide new, broad spectrum antimicrobial agents through a collaborative focus on high value natural product leads produced by under-explored sources of biological diversity.

National Institute of Health (NIH)
National Institute of Allergy and Infectious Diseases (NIAID)
Research Program--Cooperative Agreements (U19)
Project #
Application #
Study Section
Special Emphasis Panel ()
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Wisconsin Madison
United States
Zip Code
Adnani, Navid; Rajski, Scott R; Bugni, Tim S (2017) Symbiosis-inspired approaches to antibiotic discovery. Nat Prod Rep 34:784-814
Lawry, Stephanie M; Tebbets, Brad; Kean, Iain et al. (2017) Fludioxonil Induces Drk1, a Fungal Group III Hybrid Histidine Kinase, To Dephosphorylate Its Downstream Target, Ypd1. Antimicrob Agents Chemother 61:
Ramadhar, Timothy R; Zheng, Shao-Liang; Chen, Yu-Sheng et al. (2017) The Crystalline Sponge Method: A Solvent-Based Strategy to Facilitate Noncovalent Ordered Trapping of Solid and Liquid Organic Compounds. CrystEngComm 19:4528-4534
Mevers, Emily; Chouvenc, Thomas; Su, Nan-Yao et al. (2017) Chemical Interaction among Termite-Associated Microbes. J Chem Ecol 43:1078-1085
Zhang, Fan; Barns, Kenneth; Hoffmann, F Michael et al. (2017) Thalassosamide, a Siderophore Discovered from the Marine-Derived Bacterium Thalassospira profundimaris. J Nat Prod 80:2551-2555
Mevers, Emily; SaurĂ­, Josep; Liu, Yizhou et al. (2016) Homodimericin A: A Complex Hexacyclic Fungal Metabolite. J Am Chem Soc 138:12324-7
Lewin, Gina R; Carlos, Camila; Chevrette, Marc G et al. (2016) Evolution and Ecology of Actinobacteria and Their Bioenergy Applications. Annu Rev Microbiol 70:235-54
Ruzzini, Antonio C; Clardy, Jon (2016) Gene Flow and Molecular Innovation in Bacteria. Curr Biol 26:R859-R864
Zhang, Yan; Adnani, Navid; Braun, Doug R et al. (2016) Micromonohalimanes A and B: Antibacterial Halimane-Type Diterpenoids from a Marine Micromonospora Species. J Nat Prod 79:2968-2972
Arango, R A; Carlson, C M; Currie, C R et al. (2016) Antimicrobial Activity of Actinobacteria Isolated From the Guts of Subterranean Termites. Environ Entomol 45:1415-1423

Showing the most recent 10 out of 17 publications