The herein proposed Center of Excellence for Translational Research (CETR), which will be named the Antiviral Drug Discovery and Development Center (AD3C) has, at its center, the theme to develop new small molecule therapeutics for emerging and re-emerging viral infections. Translational research will focus on the inhibition of viral replication, especially viral polymerases. Progression pathways will includ target validation, high throughput screening to identify novel chemical scaffolds, and basic virologic research to prove and further probe the exact mechanism of action of identified lead molecules in viral replication. Medicinal chemistry and lead development activities will advance identified compounds down the drug discovery and development pathway, ultimately leading to preclinical evaluation of promising drug candidates for clinical evaluation. The AD3C has four interrelated research projects with a focus on flaviviruses, coronaviruses, alphaviruses and influenza. They will be supported in their efforts by three cores: an Administrative Core (Core A), a Screening Core (SC;Core B) and a Medicinal Chemistry and Lead Development Core (MCLDC;Core C). Organization and interaction between all projects and cores will be mediated out of the Administrative Core, with day to day AD3C operations led by the Core's personnel. An Executive Committee (EC) consisting of all project and core leaders will regularly review the projects'and cores'activities and productivity. Finally, an External Scientific Advisory Board (EAB) of distinguished scientists has been established to annually provide a high level evaluation of AD3C's progress and successes, and aid in refining the Center's activities and direction.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI109680-01
Application #
8641766
Study Section
Special Emphasis Panel (ZAI1-LR-M (J1))
Program Officer
Beanan, Maureen J
Project Start
2014-03-01
Project End
2019-02-28
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
1
Fiscal Year
2014
Total Cost
$6,270,702
Indirect Cost
$238,071
Name
University of Alabama Birmingham
Department
Pediatrics
Type
Schools of Medicine
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Mounce, Bryan C; Cesaro, Teresa; Moratorio, Gonzalo et al. (2016) Inhibition of Polyamine Biosynthesis Is a Broad-Spectrum Strategy against RNA Viruses. J Virol 90:9683-9692
Morrison, Clayton R; Plante, Kenneth S; Heise, Mark T (2016) Chikungunya Virus: Current Perspectives on a Reemerging Virus. Microbiol Spectr 4:
McCarthy, Mary K; Morrison, Thomas E (2016) Chronic chikungunya virus musculoskeletal disease: what are the underlying mechanisms? Future Microbiol 11:331-4
Rasmussen, Lynn; White, E Lucile; Bostwick, James R (2016) Acoustic Droplet Ejection Applications for High-Throughput Screening of Infectious Agents. J Lab Autom 21:188-97
Everts, Maaike; Suto, Mark J; Painter, George R et al. (2016) Consortia's critical role in developing medical countermeasures for re-emerging viral infections: a USA perspective. Future Virol 11:187-195
Haese, Nicole N; Broeckel, Rebecca M; Hawman, David W et al. (2016) Animal Models of Chikungunya Virus Infection and Disease. J Infect Dis 214:S482-S487
Broeckel, Rebecca; Haese, Nicole; Messaoudi, Ilhem et al. (2015) Nonhuman Primate Models of Chikungunya Virus Infection and Disease (CHIKV NHP Model). Pathogens 4:662-81
Chiang, Cindy; Beljanski, Vladimir; Yin, Kevin et al. (2015) Sequence-Specific Modifications Enhance the Broad-Spectrum Antiviral Response Activated by RIG-I Agonists. J Virol 89:8011-25
Sali, Tina M; Pryke, Kara M; Abraham, Jinu et al. (2015) Characterization of a Novel Human-Specific STING Agonist that Elicits Antiviral Activity Against Emerging Alphaviruses. PLoS Pathog 11:e1005324
Mainou, Bernardo A; Ashbrook, Alison W; Smith, Everett Clinton et al. (2015) Serotonin Receptor Agonist 5-Nonyloxytryptamine Alters the Kinetics of Reovirus Cell Entry. J Virol 89:8701-12

Showing the most recent 10 out of 15 publications