The autophagy machinery has been shown to mediate host responses against a variety of infectious agents. These responses include the lysosomal degradation of specific pathogens via canonical autophagy, as well interferon-y-dependent killing of other pathogens via non-degradative pathways. Developing small molecules that enhance autophagy (ATG) protein-dependent pathways may have the potential to yield therapeutics against a broad spectrum of organisms. The proposed project applies next-generation synthetic chemistry and high-throughput screening to discover novel enhancers of ATG-mediated defense to pathogen infection. The project includes both phenotypic and target-based screens to discover modulators of autophagy and ATG-dependent processes, which will be tested for their activity against a range of pathogens of interest to the NIAID. Compounds with broad activity will be characterized for their mechanisms-of-action and developed further through medicinal chemistry to yield therapeutic leads suitable for testing treatment strategies in animal studies.

Public Health Relevance

The development of therapeutics that prevent or treat infection by a broad range of pathogens is an urgent and unmet need for drug discovery. A drug that enhances the inherent ability of infected cells to clear pathogens within them may form the basis of a broad spectrum therapy, and represents a promising but untested strategy. The leads discovered in this project will enable the academic and pharmaceutical research communities to test, in animals, whether specific defense pathways (canonical and non-canonical autophagy) can be exploited for therapeutic benefit. .

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
1U19AI109725-01
Application #
8655106
Study Section
Special Emphasis Panel (ZAI1-LR-M (J1))
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
1
Fiscal Year
2014
Total Cost
$2,026,830
Indirect Cost
$171,978
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Xu, Xiaojin; Araki, Koichi; Li, Shuzhao et al. (2014) Autophagy is essential for effector CD8(+) T cell survival and memory formation. Nat Immunol 15:1152-61
Choi, Jayoung; Park, Sunmin; Biering, Scott B et al. (2014) The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy. Immunity 40:924-35
Karst, Stephanie M; Wobus, Christiane E; Goodfellow, Ian G et al. (2014) Advances in norovirus biology. Cell Host Microbe 15:668-80