The autophagy machinery has been shown to mediate host responses against a variety of infectious agents. These responses include the lysosomal degradation of specific pathogens via canonical autophagy, as well interferon-y-dependent killing of other pathogens via non-degradative pathways. Developing small molecules that enhance autophagy (ATG) protein-dependent pathways may have the potential to yield therapeutics against a broad spectrum of organisms. The proposed project applies next-generation synthetic chemistry and high-throughput screening to discover novel enhancers of ATG-mediated defense to pathogen infection. The project includes both phenotypic and target-based screens to discover modulators of autophagy and ATG-dependent processes, which will be tested for their activity against a range of pathogens of interest to the NIAID. Compounds with broad activity will be characterized for their mechanisms-of-action and developed further through medicinal chemistry to yield therapeutic leads suitable for testing treatment strategies in animal studies.

Public Health Relevance

The development of therapeutics that prevent or treat infection by a broad range of pathogens is an urgent and unmet need for drug discovery. A drug that enhances the inherent ability of infected cells to clear pathogens within them may form the basis of a broad spectrum therapy, and represents a promising but untested strategy. The leads discovered in this project will enable the academic and pharmaceutical research communities to test, in animals, whether specific defense pathways (canonical and non-canonical autophagy) can be exploited for therapeutic benefit. .

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Program--Cooperative Agreements (U19)
Project #
5U19AI109725-05
Application #
9628560
Study Section
Special Emphasis Panel (ZAI1)
Program Officer
Maric, Maja
Project Start
2018-03-01
Project End
2019-02-28
Budget Start
2018-03-01
Budget End
2019-02-28
Support Year
5
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Thackray, Larissa B; Handley, Scott A; Gorman, Matthew J et al. (2018) Oral Antibiotic Treatment of Mice Exacerbates the Disease Severity of Multiple Flavivirus Infections. Cell Rep 22:3440-3453.e6
Lassen, Kara G; Xavier, Ramnik J (2018) Mechanisms and function of autophagy in intestinal disease. Autophagy 14:216-220
Graham, Daniel B; Luo, Chengwei; O'Connell, Daniel J et al. (2018) Antigen discovery and specification of immunodominance hierarchies for MHCII-restricted epitopes. Nat Med 24:1762-1772
Yokoyama, Christine C; Baldridge, Megan T; Leung, Daisy W et al. (2018) LysMD3 is a type II membrane protein without an in vivo role in the response to a range of pathogens. J Biol Chem 293:6022-6038
Wilen, Craig B; Lee, Sanghyun; Hsieh, Leon L et al. (2018) Tropism for tuft cells determines immune promotion of norovirus pathogenesis. Science 360:204-208
Deretic, Vojo; Levine, Beth (2018) Autophagy balances inflammation in innate immunity. Autophagy 14:243-251
Orchard, Robert C; Wilen, Craig B; Virgin, Herbert W (2018) Sphingolipid biosynthesis induces a conformational change in the murine norovirus receptor and facilitates viral infection. Nat Microbiol 3:1109-1114
Radke, Joshua B; Carey, Kimberly L; Shaw, Subrata et al. (2018) High Throughput Screen Identifies Interferon ?-Dependent Inhibitors of Toxoplasma gondii Growth. ACS Infect Dis 4:1499-1507
Wein, Marc N; Foretz, Marc; Fisher, David E et al. (2018) Salt-Inducible Kinases: Physiology, Regulation by cAMP, and Therapeutic Potential. Trends Endocrinol Metab 29:723-735
Moretti, Francesca; Bergman, Phil; Dodgson, Stacie et al. (2018) TMEM41B is a novel regulator of autophagy and lipid mobilization. EMBO Rep 19:

Showing the most recent 10 out of 97 publications